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A simple formula for the isotope shift constant, Ctheor• is obtained which depends only on 
the mean square radius and its relative· variation within the series of isotopes. Comparison 
with experiment leads to certain conclusions on the compressibility of deformed nuclei. Sat­
isfactory agreement between the experimental and calculated values of the isotope shift for 
23 isotope pairs of spherical and deformed nuclei can be attained by introducing the two em­
pirical parameters of regular compressibility 71 = 0.7 and deformation compressibility ~ 

= -5/87T. 

1. ISOTOPE SHIFT OF THE nlj LEVEL OF THE 
ELECTRON 

The electrostatic potentials U1(r) and U2(r) 
are subject to the natural conditions outside the 
nucleus 

(2) 
THE volume isotope shift (i.s.) of the nlj level 
of an electron in the self-consistent field of the 
nucleus and the electron shells can be easily ex­
pressed in terms of the electron wave functions 
in the field of the nuclear isotopes. In the case 
of a spherically symmetric field the variables 
are separable, and the radial Dirac equations 
take the form (in relativistic units) 

With condition (2) we obtain from (1) the following 
expression for the i.s. [1, 2] 

[e1 + I- U, (r)] F,- dGtfdr- kGtfr = 0, 
(e1 - I - U; (r)] G1 + dF;fdr- kFt(r = 0, 

where i = 1, 2 is the number of the isotope, and 

k =- (j + 1/2) =- (l + 1) 
k = + (j + 1/2) = l 

j = l + 1/2, 
j = [-1/2· 

(1) 

The potentials of the self-consistent field of the 
nucleus and the electron shells can be written in 
the form of a sum of the nuclear potential of the 
i-th isotope and the potential of the electron shells 

Ui(r) = U~(r) + Ue(r). 

As we shall see in the following, we may restrict 
the solution to small values of r, for which the 
average potential of the electron shells ue ( r) 
can be replaced by a constant potential u 0• An 
estimate of u 0 on the basis of 1he Thomas-Fermi 
model gives U0 = 1.9 a.z4/3. We can therefore as­
sume that the Eqs. (1) are written in terms of the 

00 

6Tk=(G2F 1 -G1F 2)R,j2n ~ (F~F2 +G~G2)dr cm-1• (3) 
R, 

oTk does not depend on the particular value of R0 
as long as condition (2) is satisfied. It is advan­
tageous to choose R0 as small as possible, for ex­
ample, equal to or somewhat larger than the larg­
est of the radii of the nuclear isotopes. The nu­
merator and denominator increase simultaneously, 
and the integral in the denominator can be replaced 
by unity to a good approximation. 

We have therefore in this case 

1 
f!Tk = 2n (G2F1- G1F2)R, 

1 
Gz (Ro) Gr (Ro) 

21t 

= _ Fz (Ro) fr (Ro) 
21t 

(4) 

where the functions K(r) = F(r)/G(r) and x(r) 
= G ( r ) IF ( r ) satisfy the equations [3] 

r 

1( (r) = - r2k ~ (e- I -U (r 1
)) 

0 

X [1 + : _+ 11 -_ UU ((r,:)) (K(r'))2J(r')-2kdr1 (k < 0), nuclear potentials ur ( r ) * and the modified eigen- v 

values of the energy E{ = Ei- u 0• r 

'X (r) = r-2k I (e + I - U (rl)) 
*For deformed nuclei and electron states s~ and p~ (k = ±1), ~ 

Uf(r) is understood to denote the valuE! of the potential averaged [I 8-1- U (r 1 ) ( 1 ))2] I kd I k 0 X + , x (r r 2 r ( > ). 
over the angles. 8 + 1 - U (r ) 

(5) 
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In the first approximation we find the solution in 
the form (a = e 2/tic) 

{ K(r}} rtZ rtZ 
X (r) = + 2TkJ ± 2 (1 + 21 k I) 

( R21 k 1) 1 + 8 

,2 1 k I + 1 + 2 I k I ' 

(5a) 
where 

(R2Ik '> = -i.z ~ P (r', {)>, cp) (r'}21 k I+ 2 dr' sin {!>d{!>dcp 
v 

is the moment of order 21 k I of the nuclear charge 
distribution p(r, J, cp). The i.s. for s electrons 
(k = -1) depends in this case on a single param­
eter, viz., the mean square radius of the nuclear 
charge distribution. 

Let us estimate the second order contribution 
to the i.s. of an s electron (k = -1 ). It will de­
pend on the details of the nuclear charge distribu­
tion. We choose the nuclear charge distribution 
and the corresponding potential in the form 

( ) = n + 1 _!!._ (_!__)n-2 
P r 4n R3 R ' 

p (r) = 0, 

V (r) = n ~ 1 [I - n! 1 ( ; r] ~, r < R; 

V (r) = Zejr, r>R (6) 

(R is the nuclear charge radius). In this case 
( R2) and the square of the electric charge radius 
Rare simply related: (R2 ) = (n+1)(n+3)-1 R2• 

Using this circumstance, we write the second 
order correction as a product of o(R2 ) and a 
small factor: 

_ iJK 2 _ aZ 6 (R2> 
6K(R0)- a <R'> 6 <R ) - 6 ~ [I - P (n, y)], 

a 
where 

P (n, y) = (etZ)2 (P1 (n)- P~ (y)) 

-~ etZ (I + e) (R2/ 1' (Pa (n) - P 4 (y)), 

2 (n + 3) (n + 1)2 [ 1 n + 9 
PI(n)= 3ns 5-(n+1)(n+3)(n+5) 

(7) 

3 (2n + 9) 9 J 
+ (n + 1)2 (n + 3)2 (2n + 5) - (n + 1)3 (n + 3)2 (3n + 5) 

+_!_-~n+3 +~1_n+1 +-1-l n+3 
2 · 4 n + 1 12 n + 3 2 n n + 1 ' 

1 •: I P 2 (y) = TY- ny, 

(n + 3)'/, (n + 1)'/, [ 1 6 
Pa (n)- n2 5- (n+1) (n + 3) (n + 5) 

+ (n + 1)2 (n !3)2(2n + 5)] 

The second order correction term P(n, y) gives a 
contribution to the structure terms in oK(R0 ). For 
a nucleus with surface charge (n = co) we have 

P(cc,y)=-(ctZ)•C~ + ~-y-lny) 

+ ctZ(l +e) R (+--+ --{-) 
(rtZ)2 

=--5- (R0 = R, y = I). 

For a nucleus with a uniform volume charge dis­
tribution (n = 2) the main terms of P(n, y) lead 
to 

P (2, y) =- 0.22 (et:Z)2 

Thus the relative variation in oK in going 
from the model of a nucleus with a uniform vol­
ume charge distribution to one with a surface 
charge distribution amounts to only 0.02 (aZ) 2• 

We must now determine G1(R0 ) G2(R0 ). For 
this purpose it suffices to find the solutions of (1) 
in the region of small r outside the nucleus, i.e., 
in the region of the Coulomb potential. The solu­
tions have the form 

F = V! +~ bAk( 2a: y (I+ B (R0) +(~of). 

a= Akc:;Y (1 + n <Ro) (~0 f). 
where 

(8) 

b = N +k+n' +2a N +k+n' 
N+k-n'-2::;' C= N+k-n'' n'=eN-a, 

N = et:Z/J/I- e2 , 

-./1-eb=~ 
V 1+e k-a' 

c k-a 
b=k+a 

The quantity B ( R0 ) is determined by joining 
FIG = K near the boundary of the nucleus ( r "' Ro ) : 

B (R ) = _ V(i-e)/(1 +e) b- K (Ro) 
0 V(i-e)/(1 +e) c- K (Ro) 

k +a 1- (rtZ)-1 (k- a) K (Ro) (9) 
=- k- a 1- (aZ)-1 (k + o;) K (Ro) ' 

where K(R0 ) is given by Eq. (5). In the most im­
portant case k = -1 we have in second approximation 

K (R0) == K (y) =- ctZ H + {'- (et:Z)2 - f Y2 [I- (et:Z)2 P 0 (n, y)l}, 

2 (n+3) (n + 1)'[ 1 n+ 9 
Po(n,y)=3 ns 5-(n+l)(n+3)(n+5J 

3 (2n + 9) 9 J 
+ (n + 1)' (n+3)2 (2n + 5) - (n + 1)3 (n+ 3)2 (3n+5) (9a) 

3 n+3 .J 1 n+1 + 1 I n+3 +I 1 2 
-T n+1 TTz n+3 2 n n+1 ny-Tzy · 
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Ak is a normalization constant. Its value depends 
on the behavior of the wave function in the entire 
region of r. If we replace the actual wave function 
of the electron in the self-consistent field of the 
atom by the relativistic Coulomb wave function, 
we find for Ak the following expression: 

2 • ( N - n' - k )z z2 
Ak = 4nRcx,Ak r (2:> + 1) za. (n' + 1 k 1 )a 

We consider separately the i.s. for the ns 
electron: 

(A=-= A~). 

The i.s. constant C has in second approximation 
the form 

Reo ( 1 + cr ) 2 (2Z (R.2>'!.)2" 6 (R 2> 
Ctheor= -3- r (1 + 2cr) aH f (n, y, Z) <R2> , 

(13) 

'( k-cr )2 z2 = 4:rrRcoAk I' (2::; + 1) Za.n3 , 
(10) where 

where 
• r (2::; + n' + 1) na (1 +e) Ak = --'------'--'---''---'-'----'---'---

2I' (n' + 1) (N- k) Na+za 

Roo = 21r2nle4/h3c is the Rydberg constant and n 
= n' + I k I is the principal quantum number. Neg­
lecting the binding energy and the potential of the 
electron shells at the origin in comparison with 
the rest mass of the electron, we have E = 1 and 
n'- oo, N- oo. In this approximationC4J we 
obtain 

lim Ak =I. 
n', JV-+oo 

Using (4), (8), and (10), we can express the corre­
sponding i.s. in the form* 

6Tk = (Z2/n3) Ck; 

( k-cr )2(2ZR0)2a 
Ck = 2Roo r (2cr + i) --a;:;-

X [1 + B(Ro)F 6K~~o) (k < 0). (11) 

The isotope shift constants Ck are determined 
by the charge distributions of the nuclear isotopes 
and are practically independent of the state of the 
electron. In first approximation we have 

C _ R ( cr + I k I ) 2 ( 2ZRo )2" 6 (R21 k 1> 
k- co r (2:> + 1) aH I k I (1 + 21 k I ) R~ I k I 

The ratio of the i.s. of the electron states 
(n, j, lkl) and (n, j, -lkl) is equal to 

(k <0). 

(12) 

6TI k I ( a.Z )2 
6T _ 1 k 1 = I k I + cr ' 

6T 
- np'f, - ( cxZ )2 

1- 6Tns - 1+cr • 

For Z = 80 we have y = 0.104 and the term 
6Tnp112 must be included in the calculation of 

the spectral lines. t 

*The product G1 (R0 ) G2 (R.,) is replaced by G~ (R.,), since the 
difference between G1 (R.,) and G2 (R.,) gives rise to a negligible 
contribution. 

t A particularly large i. s. 8 T np will be observed for the 
'h 

spectral line emitted in the,transition (n + 1) s-+ npy,. 

f (n, y, Z) 

= ( 1- 1- cr a.Z + (1 + cr) K (y) )2 yz (t-a) [ 1 _ p (n y)] 
1 + cr a.Z + (1 - cr) K (y) ' ' 

u = ~ 1- ( aZ )2 , P(n, y) is determined by (7) and 
K(y) by (9a). 

The dependence of the i.s. constant Ctheor on 
the details of the nuclear charge distribution (6) 
for fixed values of ( R2) is given by the functions 
f(n, y, Z ). We have carried out calculations for 
three cases: nonuniform charge distribution 
( n = 1 ) , uniform volume charge distribution 
(n = 2 ), and uniform surface charge distribution 
(n = oo ). The results, given in Table I, indicate 
a very weak dependence of the i.s. on the details 
of the nuclear charge distribution (variations of 
less than 1%). The error in the determination of 
C from the experimental data on the i.s. is sig­
nificantly larger. We can therefore assume in 
formula (13) that f(n, y, Z) = f( Z) (see the fig­
ure ) . * Thus Ctheor depends, apart from Z, only 
on the nuclear parameter ( R2 ) and the relative 
variation 6 ( R2 )/ ( R2 ) in a series of isotopes. 

As is seen from Table I and the figure, f( Z) 
~ 1 with an error not larger than 3.5% for a large 
region of nuclei with Z ::; 80. In this region the 
formula for Ctheor takes on the simplest form 

Roo ( 1 + cr )2 ( 2Z (R.2)'/• )2cr 6 (R.2) 
Ctheor = 3 r (1 + 2cr) aH (R.2) • (13a) 

In references [S] and [G] the i.s. constant Ctheor 
has been determined for a definite radial charge 
distribution of the nucleus, given by the trapezoidal 
function 

p(r) = {p0 (c<:-r)/2z, 

where 

O<r<c-z 
c- z<r<c+z, 
c +z<r 

*The i. s. constant should not depend on the value of R.,. 
i.e., on y. The dependence of f(n,y,Z) on y indicates that the 
applicability of our approximation is limited to the region of 
small Ro close to R, the radius of the nucleus. Since 

Ro > R = Y(n + 3)/(n + 1) <R2>v., we choose, e.g., y =% 
(column 3 of Table I and figure). . 
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Table I. The function f(n, y, Z) for different nuclear 
charge distributions 
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I P n (r) I y='l, I Y='!a 

{ n=1 I 0.992 0.996 
Z=56 n=2 0.993 0.998 

n=oo 0.995 1.000 

{ n=1 0.921 0.964 
Z=80 n=2 0,923 0.967 

n= oo I 0.927 0,971 

j(l) 
1,00 

0,95 

0,90 

7 ,. 
40 50 80 /OQ, 

Behavior of the function f (Z) in the region of Z~lOO. For 
Z~SO, f (Z) .= 1 with an error of less than. 3.5%. The calculation 
was done for a uniformly charged nucleus (n = 2). The value of 
the parameter y was chosen as y = 2/3 •. 

_ 3Ze fl _L (_:_)2]-1 
Po - !me" . 1 c • c = 1.05·10-13 A'1• em, 

z = 1.53·10-13 em. 

It is asserted in the above-mentioned references 
that such a choice of a nonuniform nuclear charge 
distribution allows one to achieve agreement be­
tween theory and experiment for the i.s. without 
recourse to the hypothesis of the compressibility 
of the nucleus. However, it can be shown that 
formula (13a) gives the same results if we substi­
tute in it ( R 2 ) for the trapezoidal distribution, 

with the above-mentioned numerical values for 
the parameters c and z. The calculation of (R2 ) 

shows that the choice of numerical values for c 
and z of references [5] and [G] leads to values of 
(R2 ) which are too low by 10 to 15% for various 
nuclei, as compared to the values inferred from 
the experiments on mesic atoms and the scatter­
ing of fast electrons on nuclei. Thus the trouble 
does not lie in the shape of the radial distribution 
but in an incorrect choice of the numerical values 
of the parameters determining ( R2 ) and o ( R2 )/ 

(R2). 

2. COMPRESSIBILITY OF DEFORMED NUCLEI 

Let us now determine the values of ( R2) and 
6 (R2)/(R2 ) for deformed nuclei without assuming 

I Pn (r) I Y='f, 

i ! 1!=1 0.863 0.934 
Z= 90 n=2 0.866 0.938 

n= oo 0.869 0.942 

{ 
n=1 0.781 0.885 

Z= 100 n=2 0. 784 0.889 
n = oo 0.788 0.891 

a definite radial distribution of the nuclear charge. 
For this purpose we write the nuclear charge dis­
tribution in the form 

p (r, -fr, IJ!) = Pof (r!r1), (14) 

where Po is the charge density at the center of the 
nucleus and r 1 is the radius to the nuclear surface. 
For nuclei with ellipsoidal deformations [ 7] 

r 1 = G [ I + ~ ap.Y 2,. ( l't, IJl) J , .. 
where f 1 is the radius of the nucleus averaged 
over the angles. In a special coordinate system 

1Xo =~cos r. 

The radial charge distribution is given by the 
function 

f (x) > 0 for x < I; f (x) = 0 for x > I. 

For a uniform volume charge distribution, f(x) = 1 
for x < 1. We shall not specify the form of the 
function f ( x). 

Let us determine ( R 2 ) for a nuclear charge 
distribution chosen in the form (14): 

(R2 ) = ~p(r, -fr, IJ!)r2dv ~~p(r, -fr, IJ!)dv 

= ri s ~ [I+ .I:a,.Y2p.] 5 dQ I~ [I + .I:a,.Y2,.] 3 dQ 

=?is [t+ 2..r.~ 2 + - 9- V ·" r;af (r) + .. · J · 4n 1-' 14n 4n 1-' ' 

where 
1 1 

s = ~ f (x) x4dx j ~ f (x) x 2dx; t (r) =cos r (t- 4 sin2 r). 
0 0 

We express i\ in terms of the radius of the 
volume-equivalent sphere, R0: 

r~ {I + 4: 132 + 1:n v :n ~sf (r)} = Rg. (15) 

The corresponding formula for ( R2 ) takes the 
form* 

*The formula is also useful for dynamical deformations. For 
vibrational nuclei {3 2 must be replaced by <{32> and y must be 
set equal to y = 30°. 



554 E. E. FRADKIN 

<R2> = R~ s [ 1 + 4: ~2 + 4;: V 4: f3 3 f!r) + ... ] • (16) 

Here s is a parameter of the radial charge distri­
bution. For a uniform distribution s = o/s. and 
formula (15) takes on the usual form. [S] 

We cannot separate the parameters R0 and s 
without making specific assumptions about the 
radial distribution of the nuclear charge. Let 
us therefore introduce the radius of the equiv:alent 
uniform distribution 

a z Rz 
TR_eq= oS. 

Choosing Req = r 0A1.f.i, where r 0 = const, we thus 
regard the nucleus with the equivalent uniform 
charge distribution as incompressible. 

Dropping the hypothesis of the incompressibil­
ity of the equivalent uniform charge distribution 
under deformations, we must assume that 

(17) 

where R0 eq does not depend on the deformation 
parameter {3 ( R0 eq = 1.20 A 1/.i x 10-13 em). The 
function f({3) is chosen in the simplest form 

f (f3) = 1 + ~[32. (17a) 

The value of the coefficient ~ is determined by 
comparison with experiment. The dependence of 
Req on the deformations can be explained either 
by the compressibility of the actual nucleus under 
deformations [ R0 = R0({3 )] or by a change in the 
radial distribution under deformations of the nu­
cleus [ s = s ( {3 )]. We shall not separate these 
two causes in our discussion.* Using (17) and 
(17a), we obtain for ( R2) t 

<R2) = -}R~eq [ 1 + ( 4: + ~) ~2 + 4;~ lf"! f3 3 f (r)]. 
(18) 

The final expression for the i.s. constant Ctheor 
in the region of deformed nuclei has the form 

2 ( 3 )a ( 1 + cr )2 ( 2ZR 0 eq )2° 
Ctheor = 3 Roo 5 r (1 + 2a) aH L ([3, r). 

where 

L ([3, r) = [1 + (~ + ~) ( [3, + 13•) 2
] Moeq +~[(I + 0,8n~) 

4:rt 2 Ro eq S:rt 

(20) 

*Ionesco-Pallas[•] has recently discussed the i. s. for a 
definite radial distribution of the nuclear charge depending on 
the deformation parameter f3. 

tCorrections for the compressibility of the nucleus under 
deformations are introduced only in the term -{32 • However, this 
should not lead to a great error, since the term -{33 is small. Its 
relative contribution to <R2> is ~ 1% and to 8<R2> not more 
than 10%. 

For spherical nuclei L = oR0 eq /R0 eq. 
Let us now turn to the determination of the 

relative change in the equivalent radius oR0 eq I 
R0 eq under variations of the number of neutrons, 
N, in the nucleus. We have 

M 0 eq -~ Moeq -~ Moeq Y)_MY)S 
R0 eq - R0 eq 6N - R0 eq 1\A - 3A ' 

(21) 

where 
3A dRoeq s------ Roeq dA · 

For the model of the nucleus as an incompressible 
drop we have TJ = 1 and t = 1. 

The data on the scattering of fast electrons on 
nuclei speak in favor of p ( r ) = const, except in 
the surface region, where p ( r) goes smoothly to 
zero. [ 7] The existence of a surface region has 
practically no effect on the relation R0 eq "" A 113, 

but changes the value of !;. In evaluating the ex­
perimental data with the help of the Fermi model, 
t is expressed in the following form: [2] 

~ dR 0 eq 1 -1.929A~•;, + 4.687 A-'!a (22) 
S = Ro eq dA = 1 + 1.929A-'/a- 1.562A-'ia ' 

which implies t = 0.88 ± 0.02 in the region 125 
< A< 218. If the experimental data are evaluated 
on the basis of the trapezoidal model, one also ob­
tains t = 0.87 ± 0.03 for this region of values of 
A. Thus the value of t does not depend on the spe­
cific shape of p(r) but is determined by the ex­
perimental data on the dimensions of the nuclear 
surface region. The coefficients of regular com­
pressibility, TJ, [ 2] and deformation compressibil­
ity, ~. of the nucleus are determined by compar­
ing Ctheor and Cexp in the region of spherical 
and deformed nuclei. We assume that TJ and ~ 

depend weakly on A and can be regarded as con­
stant in the region 134 < A < 210. 

In order to be able to use formula (20), we must 
know the values of the deformation parameters {3 
and y. The parameter {3 can be calculated from 
the data on the intrinsic, quadrupole moment of 
the nucleus Q0, which has been measured with 
an accuracy of better than 5% by Coulomb excita­
tion. For this purpose we give the formula ex­
pressing the dependence of Q0 on {3 with an accu­
racy up to terms of order {32: 

Q0 = ~ p (r, 'l't, <p) r 2 (3 cos2'1't- 1) dv 

= 4y:g. ~p(r,'l't,<p)r4Y20 ('1't)drsin'l'td'l'td<p. 

Choosing p ( r, J., cp) in the form (15), we obtain 
with the help of (16) 
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Table II. Deformation parameter {3 
----~----~--~----~ 
Nucleus I Q,,IO-" em• I {3 II Nucleus I Q,,IO-" cm2 I {3 II Nucleus ,Q,,IO-" em•. I {3 

Smtio 3.65 [ll] 0.180 Gdtss 7.41 [ll] 0.325 HflBo 6.61 [16 ] 0.2'•3 
Smt•• 5.86 [11 ] 0.278 Gdt•o 7,65 [11 ] 0,332 w1sz 6,34 [15 ] 0.226 
Sm164 6.83 [11 ] 0.316 Yb17o 7.48 [11 ] 0.290 WlB< 6.04 [16 ] 0.215 
Eulsl 2.73 * 0.134 Ybt7t 7,98 [14 ] 0,306 w1se 5.99 [15] 0,212 
Eulss 6,94 [12 ] 0,317 Ybl72 7.72 [11 ] 0.296 Re1ss 6.28 [16 ] 0,219 
Gd164 5.88 [11 ] 0.268 Ybt7s 7. 77 [14 ] 0.296 Re1S7 5,60 [16 ] 0.196· 
Gdm 6.50 [13] 0.292 Ybm 7.72 [11 ] 0.294 o5tse 5.50 po] 0,191 
Gd1ss 6.79 [11 ] 0,303 Ybt7• 7.60 [11 ) o:2s7 OsiBB 5.30 [16] 0.184 
Gdts7 6.60 P"l 0.294 Hf17s 6~85 P'l 0.253 Ost9o 5.06 [16 ] 0.174 o5192 4,54 [16 ] 0.156 

*Computed from the ratio 0., (Eu151)/0., (Eu153) = 0. 393. [17] 

Qo = v!n ZR2 eqf3 {cosr + f Y ~~(I- 2sin2r) +- .. } 

= 3 ZR2oeqf3 {cos r + 0.36[3 (I- 2 sin2r) +· . ·}. 
f5lt (23) 

The fact that formulas (17) and (17a) violate the 
condition of incompressibility of the nucleus under 
deformations affects only terms of order {33, which 
have been omitted in (23). Within our limits of ac­
curacy* we can thus in (23) replace R~q by Rfi eq• 
a quantity which does not depend on the deforma­
tion parameter {3. Within the framework of our 
model it is not possible to determine the terms 
of order {33 more precisely. For axially symmet­
ric prolate nuclei we have t 

Qo = / 5n ZR2oeq [3 {I + 0.36[3 +·. ·}· (23a) 

In Table II we list the values of the deformation 
parameter {3 for 28 nuclei, as computed with the 
help of formula (23a) ( R0 eq = 1.20 A l/3 x 10 -t3 em). 

3. COMPARISON WITH EXPERIMENT 

The constant C is found from the experimental 
data on the i.s. with the help of the formula 

where 1/Js ( 0) is the value of the nonrelativistic 
wave function at the position of the nucleus. 

(24) 

Setting A 2 = 1, we obtain the expression given 
by Rosenthal and Breit, [4] where the relativistic 

*The error in the estimate of f3 due to the neglect of terms 
-{33in (23) is not larger than 3 to 5%, i.e., of the same order as 
the experimental error in the determination of the intrinsic 
quadrupole moment of the nucleus. 

tin a number of papers ([10] and others) the following formula 
is given: 

Q0 = (3/V5n)ZR2oeq~{l + 0.16~ + ... } (23b) 

The discrepancy between (23a) and (23b) amounts to a few 
percent for strongly deformed nuclei. It can be shown that the 
term -{32 has been determined incorrectly in the derivation of 
formula (23b). 

wave function is normalized by its asymptotic 
form. The function 1/Js ( 0) can be treated as a 
wave function in some effective field of the nu­
cleus and the electron shells and the semi-em­
pirical Fermi-Segre-Goudsmit formula[ 18] can 
be used. Assuming E < 1, we find the following 
expression for A2(n') in the Coulomb field: 

A2 (n') = (n' + 1)8f (n' + 2cr + 1) (N + 1- n')2 (N + n' + cr) 
r (n' + 1) (1 + cr)22 N3 + 2<> (N + 1) 

In the effective field of the nucleus and the elec­
tron shells the number n' can be regarded as an 
effective radial quantum number equal to na- 1. 
The calculations show that for 56 < Z < 82 the co­
efficient A2 varies within the limits 0.80 < A 
< 1.10 as n' changes from 0 to 7. Changing n' 
from 0.5 to 7 induces variations of A2 within the 
limits 1 < A < 1.10. It follows that a sufficiently 
accurate estimate will be A2 = 1 ± 0.1. 

The coefficient in (24) can also be determined 
in a different manner, by using the dependence of 
the hyperfine structure constant of the s electron 
term of an odd isotope on the magnetic moment of 
the nucleus:[tB]* as= GH(n')7raiJI/J~(O)/Z, where 

G=fRcoa2Z: j Fr(i.Z)(I-6)(I-e), 

H (n') = (n' + 1)3 [2 (n' +a)+ NJ/3N4 • 

The formula for Cexp can be rewritten 

C - 6Ts 
_exp - a (n') a 5/0 ' 

I A2 
a(n) = H 

3 r (n' + 2cr + 1) (N + n' + cr) (N + 1- n')2 

2 l' (n' + 1) (1 + <>)2 [N + 2 (n' + <>)] (N + 1) N 2a 1 ( 24a) . 

The calculations show that the quantity a(n') in­
creases smoothly from 0.95 to 1 ( Z = 55) and 

*Usually one leaves out the coefficient H(n') in the expres­
sion for the hyperfine structure constant. This corresponds to 
the approximation e: = 1, n'-+ oo, N -+ oo, Then lim H(n') = 1. 
Actually, e: < 1 and H(n ') differs from unity. by terms of order 
( aZ)2 , which may introduce errors of the order of a few per cent 
for heavy nuclei. 
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Table III. Isotope shifts 

I ctheor' 10-• em -1 

f3Cexp' 
Ele-1 z I \(~)._r,t ment A1-A2 l;=l. r,=1.

1
l; (22). r,=0.7 I 10_. cm-1 

~=0 ~=0 r,=0,1;=0 
g, 

Ba 56 134-136 102.2 
136-138 101.7 

Sm 62 150-152 486 
152-154 327 

Eu 63 151-153 818 
154-156 353 
155-157 185 

Gd 64 156-158 300 
158-160 218 
170-172 312 

Yb 70 171-173 175 
172-174 238 
171!-176 196 

Hf 72 178-180 206 
w 74 182-184 234 

184-186 301 
Re 75 185-187 149 

186-188 316 
Os 76 188-190 291 

190-192 235 
198-200 479,7 

Hg 80 200-202 477.6 
202-204 475.5 

Ph 82 204-206 548,0 
206-208 546.2 

from 0:92 to 1 ( Z = 80) as n' is increased from 
0 to 6. 

Thus we may estimate a(n') to be equal to 
a(n') = 0.95 ± 0.05. If sufficiently accurate ex­
perimental data are used for as and J.l (error 
- 1%), formula (24a) is more reliable than (24). 
The i.s. constant Cexp is determined from the 
i.s. of the spectral line ov up to a factor {3 which 
allows for the contribution from the electron 
shells to the i.s. Numerous computations [18- 23] 

indicate that {3 f::::: 1 (with an error of 10 to 15%, 
usually in the direction of a lower value of {3). 

The total error in the determination of Cexp 
from the experimental data on the i.s. of the spec­
tral lines ov is equal to 15 to 25%. This estimate 
is supported by the fact that the values of Cexp 
obtained from different spectral lines of an ele­
ment show a spread of the same size. [18] 

In Table III we make a comparison of the i. s. 
constants Cexp and Ctheor for 25 pairs of iso­
topes. Ctheor is computed from formulas (19), 
(20), and (21) with different assumptions about the 
values of the nuclear compressibility parameters 
71, t, and ~. It follows from the analysis of Table 
III that it is necessary to introduce, in addition to 
t [formula (22)], the coefficient of regular com­
pressibility 71 = 0. 7 (column 5) in order to achieve 
agreement between the calculated and experimen­
tal values of C in the region of spherical ( Ba, Hg, 
Pb ) and equally deformed nuclei ( Cd 155-157, 

Yb172-174 ). [2, 21] However., for isotope pairs with 

62 62 44±9 [24] 

62 62 67±13 [24 ] 

428 334 275 312±65 [25 ] 

268 173 189 170±35 [25 ] 

754 657 458 450±50 [25 ] 

285 177 203 162±26 [26 ] 

118 110 109± 18 [26 ] 

233 171! 121±19 [2•t 
152 128 125±20 {'6 ] 

215 185 110±10 [27 ] 
78 109 112±12 [27 ] 

142 144 99±8 [27] 
100 121 94±5 [27] 

97 132 144±13 [25 ] 

111 
i 

152 132±23 [28 ] 

179 188 117±20 [28 ] 

18 106 157±40 [25 ] 

177 200 176±27 [25 ] 

152 186 150±23 [25 ] 

98 157 130±20 [25] 

301 301 243±27 [25 ] 

300 300 270±30 [25 ] 

299 299 267±30 [25 ] 

345 345 280±30 [25] 

344 344 315±35 [25 ) 

large differences in the deformation it is not suf­
ficient to decrease the regular part of the i.s. in 
order to obtain agreement between theory and ex­
periment. We must also decrease the deformation 
part of the i.s. lllustrative examples of this are 
the i.s. of the nuclei Eu151- 155 and others (column 6), 
where only the deformation isotope shifts are 
given. The latter are not smaller than the total 
experimental i.s. Cexp· 

It is therefore necessary to introduce the com­
pressibility constant of the nucleus for deforma­
tions ~ < 0. If we set 71 = 0. 7 and ~ = -5/87r, we 
obtain agreement between the calculated and ex­
perimental values in almost all cases ( 23 pairs 
of isotopes, column 7 ) . * 

The computations leading to Table III have all 
been carried out for axially symmetric nuclei 
( y = 0). According to the model of Davydov and 
Filippov, [29] some of the nuclei considered by us 
are not axially symmetric. However, the effect 
of the deviations from axial symmetry on the i. s. 
is small (not larger than 10%) and is not observ­
able in practice in view of the experimental errors 
in the i.s. itself as well as in the values of the de­
formation parameters. We illustrate this on the 
example of the relative i.s. of the isotopes of Os 
(Table IV). 

*The calculated values Ctheor for the isotope pairs Yb170 , 

Yb172 and W184 , W186 are too high, apparently owing to the use of 
incorrect values for the deformation parameter {3 for the nuclei 
Yh170 and W186 • 
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Table IV. Relative isotope shifts of the isotopes of Os* 
(ry=0.7, t=0.894) 

Relative Relative Relative 

Isotope i. s. i. ·s, i. s. Experi-
ofOs "( "( 

~=-~I 
ment["] 

~=-~I ~=·0 ·--~I ~=0 ~=0 Srt .,- 81t 

186 0 15.9 
1.27 1.81 1,31 2.00 Vi bra- 1.36 2.30 1.35 

188 0 18.5 tional 
1.18 1.55 1,26 1. 78 1.22 1.83 1.15 

190 0 21.9 Nuclei 

1 1 1 1 1 1 1 
192 0 24.5 

*The relative i. s. were computed by formulas (20) and (21) for three nuclear models: 
axially symmetric nucleus (y=O), non•axially symmetric nucleus,[z<l] and vibrational 
nucleus, with different assumptions about the value of the nuclear compressibility con­
stant for deformations: .f=o and .f=-5/817. The i. s. of the pair Os190 , Os102 was taken as 
unity, 

Using the value ~ = -5/87r we obtain for the 
mean square radius of the deformed nuclei 

<R2 3 2 [ 5 25 .. /5 J ) = 5 Ro eq I + 8n ~2 + 42:t V 4it ~af (r) , (18a) 

13 Ramsak, Olesen, and Elbek, Nucl. Phys. 6, 
451 (1958). 

14 Elbek, Nielsen, and Olesen, Phys. Rev. 108, 
406 (1957). 

15 Hansen, Olesen, Skilbreid, and Elbek, Nucl. 
Phys. 25, 634 (1961). 
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which exhibits a slower increase of ( R2 ) with {3 
than is the case for incompressible nuclei with a 
radial charge distribution which is independent of 
the deformation. This can be interpreted as an 
increase in the concentration of protons at the 
center of the deformed nucleus as compared to 
spherical nuclei. 

16 1 F. K. McGowan and P. H. Ste son, Phys. Rev. 

In conclusion I take this opportunity to express 
my deep gratitude to Prof. N. I. Kaliteevskil and 
M. P. Chal:ka for their constant attention to this 
work, Prof. Ya. A. Smorodinskil and Yu. P. Don­
tsov for a fruitful discussion of the results, and 
to D. P. Grechukhin for valuable criticism. 
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