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Any Feynman graph can be characterized algebraically by a certain rectangular matrix, the 
incidence matrix. An explicit expression is found for the quadratic form belonging to an ar­
bitrary graph in the x and p representations in terms of the incidence matrix. The expres­
sions obtained are used to prove and generalize the Symanzik theorem. With the help of these 
theorems a small number of graphs are found which majorize all strongly connected graphs 
of scattering processes involving 1r mesons and nucleons. 

1. INTRODUCTION 

IN a previous paper, [l] a method for the majori­
zation of Feynman graphs has been developed. With 
the help of this method, the consideration of all 
strongly connected graphs* for a certain process 
(in the Euclidean region of the external momenta) 
is reduced to the consideration of a finite number 
of graphs. It should be noted that we regard the 
squares of the external momenta pf as independ­
ent variables, which in general do not satisfy the 
condition pf = Mf. 

Let us denote by G (D) the maximal (connected) 
region of Euclidean external momenta p, including 
the point p = 0, in which the Feynman integral Tn 
corresponding to the (strongly connected) graph 
D has no singularity. Let R be the class of all 
strongly connected graphs for the given process. 
Then none of the integrals Tn has a singularity 
in the intersection of the regions G (D) (the inter­
section is denoted by GR, DER). 

For the scattering of mesons on mesons, nucle­
ons on nucleons, and mesons on nucleons, a finite 
set R0 of graphs has been found [2] such that 

GR = GR,· 

For example, in the case of nucleon-nucleon scat­
tering the set R0 consists of the seven graphs 
shown in Fig. 1 (heavy lines: nucleons, thin lines: 
mesons; the circles symbolize external vertices; 
the numbering of the vertices in this figure will 
be used below in Sec. 5 ). In the case of meson­
meson scattering, this set consists of three graphs, 

*A graph is called strongly connected if it does not separ­
ate into two parts after an arbitrary single internal line has 
been cut. 
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and for meson-nucleon scattering we have fourteen 
graphs. A method for obtaining the class R0 is 
given in Sec. 3. 

In order to compare the graphs of the class R0, 

we must investigate the quadratic forms belonging 
to a general Feynman graph in more detail. This 
will be the subject of the present paper. In Sec. 2 
we shall obtain an explicit expression for the quad­
ratic form of an arbitrary Feynman graph in terms 
of the so-called incidence matrix. We shall also 
give the expression for the conjugate (inverse) 
quadratic form. In Sec. 3 we shall determine the 
minimum of the conjugate quadratic form as a 
function of the Feynman parameters a (for Eu­
clidean external momenta) and derive from this 
Symanzik's theorem [3] on the majorization of 
graphs. This theorem will also be somewhat gen­
eralized. The results of Sec. 3 will be used in Sec. 
4 to narrow down the class of graphs R0 for the 
above-mentioned scattering processes. 

We note that the present paper consists basic­
ally of an enumeration of results. Many of the 
proofs have been omitted due to lack of space.* 

*A detailed account of all proofs can be found in a pre­
print of the authorsJ2] 
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2. EXPRESSION FOR THE QUADRATIC FORM I 0 Pj I 
OF A GRAPH IN TERMS OF ITS INCIDENCE A (IX, p) =- P; dti d-1 (1X), i,j=l, ... ,n-1, 

MATRIX 1 

M2 (IX)=~ 
Let us consider an arbitrary graph with n ver­

tices and l internal lines. All lines in the graph 
are oriented, the external lines going into the cor­
responding vertices whereas the directions of the 
internal lines are fixed arbitrarily. The structure 
of such a graph can be completely characterized 
by a c'ertain matrix E with n rows and l columns. 
For this purpose we number separately the ver­
tices and internal lines of the graph. The elements 
Eiv of the matrix E are determined in the follow­
ing way: Eiv = 1 if the line v comes out of the 
vertex i, Eiv = -1 if the line v goes into the ver­
tex i, and Eiv = 0 if the vertex i does not belong 
to the line v. The matrix E is well known in top­
ology and is called the incidence matrix.* 

The incidence matrix E allows for a simple de­
scription of the momentum conservation law in the 
vertices of the graph. Let kv be the momenta of 
the internal lines and Pi the external momenta of 
the graph. If no external line goes into the vertex 
i, the momentum Pi is identically zero. The law 
of conservation of momentum in the vertices of 
the graph takes the form t 

i =I, ... , n. (2.1) 
V=l 

The self-consistency of the system (2.1) re­
quires the conservation of the external momenta: 

n 

~ P; = 0. (2.2) 
i=I 

With the help of the incidence matrix it is compar­
atively easy to obtain an explicit expression for the 
quadratic form Q( a, p) belonging to an arbitrary 
graph. The form Q( a, p) is defined as the ex­
tremum of the function 

l 

1( (IX, k) = ~ IXv (k~ -m~) (2.3) 
v=l 

as a function of the internal momenta (see C11]) 

and, for a connected graph with the incidence 
matrix E, is equal to 

Q (IX, p) =A (IX, p)- M2 (IX); (2.4) 

*The incid~ce matrix was introduced by Poincare[•] in 
1901. For the topological properties of the graphs and the 
role of the incidence matrix see [•,a], 

tThe momentum conservation law in the form (2.1) has 
been given in the work of Bogolyubov and ParasyukJ•] For­
mula (2.1) is a particular case of the general ex.Ptession for 
the I':J. boundary of a one-dimensional chain (cf. L•l, Chapter 7). 

(2.5) 
V=l 

Here 

d;j = ~ E;v Ejj IXv, (2.6) 
V=l 

d ( a ) is a determinant of order n - 1: 
dn dln-1 

d (ex)= 

(we assume that there is an external line going 
into the vertex n with a momentum Pn which is 
not identically zero). The expression for the 
quadratic form A( a, x), the conjugate (i.e., the 
inverse) of the form A( a, p ), is particularly 
simple: 

l n-1 n 

A(IX, x) =~ ---!---(~ EtvXif = ~ dtjX;X;. (2.7) 
V=l V f=l f ,j=l 

The fact that the forms (2.5) and (2. 7) are mutually 
conjugate implies that 

A (IX,+ aA!ax) =A (IX, x). (2.8) 

Here 8A/8x is a symbolic notation for the set of 
n -1 four-vectors 8A/8xiJ.' (J.' = 0, 1, 2, 3; i = 1, 
2, ... ,n-1). 

Formulas (2. 7) and (2.5) can be obtained in dif­
ferent ways. They are apparently most easily de­
rived from the expression for the contribution 
from the Feynman graph in the x representation 
by a Fourier transformation ( cf. [3]). In this case 
the quadratic form (2. 7) appears in the exponent 
and Gaussian quadrature leads to the form (2.5) 
( cf. [S], where this derivation is given). The same 
formulas can also be derived by purely algebraic 
transformations, starting with the definition of the 
form Q( a, p) as the extremum of the form K( a, k) 
( cf. [2] ). 

For example, if all internal lines represent the 
scalar propagator ( k~- m~ + iO) - 1 and the graph 
D contains no divergences, the contribution from 
this graph has the following form: 

l 

1 1 <'l (1 - ~ a.) 

T D (p) = C) · • ·) d2 (ll) [QD (ll, ~~~ i0)2n-l-2 

l 

II dll; • <2. 9 > 
V=l (t\1 

where C is a constant. 
We note that (2.5) and (2. 7) have direct meaning 

only for positive a 1, ••• , az. As was noted by Lan­
dau, [SJ if some av is zero, then the form Q( a, p ), 
as a function of the remaining a, coincides with 
the form corresponding to the graph obtained from 
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the original graph by contracting the line v into a 
point. In this case the external momentum at this 
point is equal to the sum of the external momenta 
at the ends of the line v. In the following we shall 
assume that all av > 0 and use formulas (2.5) and 
(2.7). 

3. METHOD OF DETERMINATION OF THE 
CLASS R0 

As is known (cf., e.g., [3]), the region of regu­
larity G (D) defined in the Introduction consists of 
those (Euclidean) momenta p for which 

l 

Qn (IX, p) < 0 for all IX";> 0 (~11X" > 0). (3.1) 

For example, the expression (2.9), as a function of 
p, has obviously no singularities in the region (3.1). 
In the general case of a graph with arbitrary inter­
nal lines and containing, in general, divergences, 
an analogous assertion can be proved with the help 
of the regularized expression for the function 
TD(P) obtained by Bogolyubov and Parasyuk. [?] 

The majorization of graphs for Euclidean ex­
ternal momenta* is based on the following simple 
lemma:C1J 

Lemma 1. If the momenta along the internal 
lines kv take the values of the set P of linear 
combinations of the external momenta (with real 
coefficients) and satisfy the conservation law 
(2.1) in the vertices of the graph, then the form 
Q( a, p) is equal to the minimum (with respect 
to the kv ) of the function K ( a, k). 

With the help of this lemma one can prove two 
theorems [i] which play an important role in the 
majorization of graphs. In order to formulate the 
first theorem, we introduce the notion of a sub­
graph: if the removal of some internal lii.J,es and 
internal vertices t from a graph DER leads to a 
graph D' E R, then the graph D' is called a sub­
graph of the graph D. 

Theorem 1. Every graph is majorized by any 
one of its subgraphs. 

*The set P consisting of linear combinations of the ex­
ternal momenta p is called Euclideal! if the matrix composed 
of the scalar products PiPj is positive definite, i.e,, if for 
arbitrary real ai 

(I.aiPi)2 2: 0, 

where only the null vector has a length equal to zero. These 
conditions are necessary and sufficient for the existence of a 
basis in the space P in which the scalar product of a vector 
with itself is equal to the sum of the squares of its com­
ponents. As is known, the physical momenta are pseudo­
Euclidean, not Euclidean, 

tAn internal vertex is a vertex in which the external mo­
mentum is identically equal to zero. 

Theorem 2. The graph D contain a closed poly­
gon with n + 1 sides, n of which are associated 
with the mass M and one with the mass m ::s M. 
Interchange the masses corresponding to these 
sides in the following way: M ~ m. As a result 
one obtains a new graph D' which majorizes the 
original graph D. 

Let us prove the following lemma: 
Lemma 2. Every graph is majorized by some 

graph which has three lines in every vertex. 
Assume, for example, that n > 3 meson lines 

go into some vertex 0 of the graph D. Replace 
the vertex 0 by a polygon with n vertices such 
that at each vertex of this polygon one and only 
one of the lines converging in the point 0 enters. 
The vertex 0 is thus replaced by n vertices each 
having only three lines. The resulting graph D' 
majorizes the graph D by virtue of the fact that 
D' goes ~ower into D if the Feynman parameters 
a on all sides of the n vertex polygon are set 
equal to zero. A vertex containing other lines 
besides meson lines can be treated in an analogous 
way by making use of the conservation of baryon 
charge and strangeness. 

Let us consider the class R of strongly con­
nected graphs of a certain process whose vertices 
contain either two nucleon lines and one 1r meson 
line or four meson lines.* This class is charac­
teristic of the usual theory of the interaction of 
pseudoscalar mesons with nucleons. According 
to Lemma 2 every graph of this class is major­
ized by some graph of the class R' in which each 
vertex has three lines: two nucleon lines and one 
meson line or three meson lines. The class R' 
corresponds to the model of the interaction of 
scalar mesons with nucleons. From the previous 
discussion GR => GR' ( cf. the definition of the 
intersection GR in the Introduction). 

In every graph of the class R' the nucleon 
lines form several nonintersecting polygons and 
broken lines ("chains"). The number of nucleon 
chains is equal to half the number of nucleons 
participating in the reaction. If the nucleon poly­
gons of an arbitrary graph are replaced by meson 
polygons, the value of. the form Q( a, p) increases. 
Therefore GR' = GR*• where R* is the subset of 
R' consisting of graphs without nucleon polygons. 

The following lemmas hold for the graphs of 
the class R: 

Lemma 3. Let n be a set of lines and vertices 

*The class R is a subclass of a wider class of graphs 
whose internal lines can correspond to strange particlesJ1] 

The class R is obtained from this wider class by replacing 
all baryon lines in a given graph by nucleon lines and all 
meson lines by 11 meson lines. 
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of a graph D containing, together with each line, 
the vertices at the end of that line. Assume that 
the vertex a does not belong to Q and is con­
nected with the vertex b of Q through some chain 
(a, b )0 which has no points belonging to Q except 
b. Then there exist two chains without common 
lines, (a, b)1 [which, in general, is different from 
(a, b )o l and (a, b' )2 (b'E Q), connecting the vertex 
a with the set n. 

Lemma 4. Under the assumptions of Lemma 3, 
where the first chain (a, b )0 consists of nucleon 
lines and the remaining nucleons of the graph are 
all contained in n, the graph D is majorized by 
the graph D' containing the meson chain (a, b' )2 
(b'E Q) and differing from D only in that the nu­
cleon lines not belonging to Q form the chain 
(a,b) 1 [insteadofthechain (a,b)0 ]. 

The proof of Lemma 4 makes use of Theorem 2. 
With the help of the assertions above it can .be 
shown that any strongly connected graph is major­
ized by a graph of the class R0 [ cf. formula (1.1) ]. 

4. THE SYMANZIK THEOREM AND ITS GENER­
ALIZATION 

It follows from (3.1) that the region of regular­
ity G of a graph with the quadratic form (2.4) 
(with Euclidean momenta) can be described in 
the following fashion: 

E G 'f -L2 ( ) - A (a, p) < I p , 1 p = sup --;w~ . (4.1) 
a'J:;;::,.o 

The function L(p) is homogeneous of the first 
degree [under multiplication of the 4(n -1 )-com­
ponent vector argument p by a positive factor]. 
If the momenta are Euclidean, L(p) is negative 
and satisfies the triangular condition 

[ (p + q) <I (p) +I (q), 

it vanishes only if p = 0. In other words, if the 
external momenta are Euclidean, the function 
L(p) is a norm.* 

Using the fact that the quadratic forms (2.5) 
and (2. 7) are mutually conjugate, it can be shown 
that the norm conjugate to L(p) is equal to 

L (x) = inf Y M2 (a.) A (a., x). (4.2) 
a.v::>-0 

We recall that the norms L ( x) and L ( p ) are 
called mutually conjugate if 

l n-1 I 
L (x) =_max ~ x,.p,. . 

L (p)<;;;l i=l 

(4.3) 

*The general properties of a norm, which will be used in the 
following, can be found in any treatise on functional analysis 
(cf, e.g., [••], Chapter 11). 

[An equivalent definition of the conjugate norm can 
be given by starting from a condition of the type 
(2.8)]. 

It turns out that the minimum of the right-hand 
side of (4.2), i.e., the norm L(x), can be found ex­
plicitly. Let us assume initially that, for given x, 
the minimum occurs at an internal point of the re­
gion of values a (i.e., all av > 0, v = 1, ... , l ). 
This point is found by setting the derivatives with 
respect to av of the expression M 2 ( a) A (a, x) 
equal to zero: 

a." = ~v I~ B;vxtl {[~1 * (~1 
B;sXt fr ~1 a.sm~ }"'. (4.4) 

The variables a are determined by (4.4) only up 
to a positive factor, which is unessential in view 
of the homogeneity of the functions L(p) and L(x ). 
If, for example, we assume that 

l 

~ m~a., = 1, 
V=l 

then we obtain from (4.4) that 

Substituting (4.4) in (4.2), we find 

L (x) = ~1 mv I ;~1 
8;vX; I· (4.5) 

Let now some av0 = 0. According to the remarks 
at the end of the preceding section, the forms A 
and M 2 then go over into the forms corresponding 
to a graph in which the line v0 is contracted into 
a point, so that the variables xi at the ends of this 
line coincide. Hence. 

n-1 

~ B;v,Xi = 0, 
i=l 

and formula (4.5) is again the correct expression 
for the minimum (4.3). Thus formula (4.5) is valid 
in all cases. 

If not all vertices of a graph are external, some 
Pi = 0 and the norm L(p) is actually a norm in a 
space with a lower number of dimensions [than 
4 ( n - 1 ) ]. It can be shown that the corresponding 
conjugate norm is equal to the minimum of the 
norm L(x) with respect to the variables Xi cor­
responding to the internal vertices: 

If P;nt == 0, then L (x) = min± m, I n~1 
B;vX; I· (4.6) 

Xinf V=l i=l 

We are now in a position to formulate the Sym­
anzik theorem: 

Theorem 3. (Symanzik theorem). Consider two 
graphs D1 and D2 for the same process and let 
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L1 ( p) and L2 ( p) be the norms corresponding to 
these graphs according to (4.1). Then the graph 
D1 majorizes the graph D2, i.e., 

[1 (p) > [2 (p) 

for all Euclidean p, if and only if 

L 1 (x) <, L 2 (x), 

for all Euclidean x, where Li(x) is given by (4.6). 
This theorem follows immediately from the fact 

that L(x) and L(p) are mutually conjugate norms. 
In an analogous fashion one proves the following 

generalization of the Symanzik theorem: 
Theorem 4. Consider k+ 1 graphs Da (a = 0, 1, 

... , k) for the same process and let La ( p) be the 
norms corresponding to these graphs. The graphs 
D1, ... , Dk majorize the graph D0, i.e., 

Lo (p) <,max (La (p)) == I1. .. k (p), (4. 7) 
O=l, ... ,k 

if and only if the conjugate norms satisfy the in­
verse inequality 

L1. .. k' (x) <, L 0 (x). 

Here Lt. .. k(X) is the maximal norm satisfying the 
inequality 

L1. .. k (x) <, min La (x). (4.8) 
o=l, ... ,k 

Theorem 4 and (4.8) imply a simple sufficient 
condition for the majorization of one graph by a 
set of others which we shall use in the following. 

Corollary to Theorem 4. A sufficient condition 
for the validity of (4. 7), i.e., that the graph Do is 
majorized by the set of graphs D1, ••• , Dk, is 

min La (x) <, L0 (x). 
O=l, .. .,k 

5. APPLICATION TO NUCLEON-NUCLEON 
SCATTERING 

(4.9) 

We can use Theorem 3 to show that graph I of 
Fig. 1 majorizes graphs IV, V, and VI of the same 
figure. For example, for the graph IV with the 
norm Liv(x), the assertion follows from the fol­
lowing chain of inequalities: 

Lrv (x) =min {M [ I X1- x5 l +I x5 - X21 
X:;, ••• ,x8 

+ I X a - X sf + I X all + m [ I X1 ·- X7 I + I X7 - x2 ] 

+ I X7 - Xsl + I Xs- xti I + I X a - Xs I + I Xsll} 

>(M -t m) min [(l X1 -xsl +I X5 -X21) +(I x3 -x6 1 

Xs, X 15 

+I Xsl )l + t m min [(I \.1- x71 +I X7- X2/) 
x5 .••• x, 

+ (I X a- XR I + I Xsl ) 

+ (I X2- Xsl + I Xs - Xa/ + I Xs/ ) + (I X1- Xsl 

+ / Xs - Xal + I XG - Xal ) + (I X2 - X1l + I X7 -- Xs] 

+ I Xsl ) + ( I X1 - X7/ + I X7 - Xsl + I Xs - X a I ) l 
>Lr (xl, X2, Xa). (5.1) 

Here LI(x) is the norm of graph I: 

Lr (xl, X2, Xa) = M (I X1 - x2/ + I Xa/) 

(everywhere we set x4 = 0 ). It is shown in an 
analogous manner that the graphs V and VI also 
are majorized by graph I. 

(5.2) 

With the help of the corollary to Theorem 4 
we can show that a pair of graphs I with different 
arrangements of the external momenta majorizes 
the graphs III and VII of Fig. 1. As an example, 
we give the proof for graph III: 

Lrrr (x) =min {M (I x1 -xsl +I x.-x21+ l x3 1) + m( jx5-x3 1 
Xo, Xs 

+ (M - m) min (I X1- Xsl + I Xs- x2l ) 
x, 

+ t m min [ (I X1- Xsl + I Xs - x2l ) + (I X1 - X6 1 

X5, x, 

+ I Xs - X2l) + (I X1 - Xli I + I Xs -X a]) + (l X2 - Xsl 

+ I Xi - Xal ) + ( I X1 - Xsl + I Xsl ) 

+ (I X2- Xal + I Xsl ) l > M (I X1 - x2l + I x3 1 ) 

+ t m (I X1- Xa [ + lx2-xal +I X1l + I x2l) 

>min{Lr(xl> x2, x3),Lr(X2 , xi> Xa)}, (5.3) 

where LI(x) is given by (5.2). The proof for graph 
VII of Fig. 1 is analogous. We note that we would 
not be able to eliminate graphs III and VII with the 
help of the Symanzik theorem (Theorem 3) alone, 
for the graph I with a fixed arrangement of the ex­
ternal momenta does not majorize graphs III and 
VII. 

It has thus been shown that the graphs I and II 
of Fig. 1 majorize all strongly connected graphs 
for the nucleon-nucleon scattering process. 

Setting M = m, we conclude from the above­
given results that all strongly connected graphs 
for the scattering of a meson by a meson are ma­
jorized by a quadrangular graph consisting only 
of meson lines. 

It can also be shown that all strongly connected 
graphs for meson-nucleon scattering are major­
ized by the set of four graphs shown in Fig. 2. 

We note that, according to the discussion in 
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Sec. 3, these results are true not only for scalar 
but also for pseudoscalar mesons. The graphs I 
and II of Fig. 1 still have physical meaning if the 
scalar mesons are replaced by pseudoscalar ones. 
They can therefore be used for a precise determi­
nation of the region GR. The graphs of Fig. 2 and 
the quadrangular graph for meson-meson scatter­
ing cease to have physical meaning after such a 
replacement, i.e., they no longer belong to the 
class R. In the pseudoscalar case it can, there­
fore, only be asserted that these graphs allow us 
to determine some region containing the region 
GR; 

6. DISCUSSION OF RESULTS 

In the present paper we have carried out the 
majorization of graphs in the Euclidean region 
without any restriction on the squares of the ex­
ternal momenta. The results obtained in this work 
can therefore be used in the investigation of the 
analytic properties of the amplitudes in the entire 
real region of values of the independent scalar in­
variants [3, 11] and even in a certain complex re­
gion of values of these invariants. [11] This makes 
it possible to obtain single dispersion relations in 
energy and momentum transfer for elastic scat­
tering. 

The expressions for the quadratic forms A and 
A obtained in Sec. 2 and the functions L ( x) and 
L(p) determined in Sec. 4 can be used not only for 
the majorization of graphs in the Euclidean region 
but also for the determination of the singularities 
of graphs with arbitrary complex values of the 
momenta. [8] 

In conclusion the authors express their deep 
gratitude to Academician N. N. Bogolyubov for 
his interest in this work and valuable comments 
and to A. N. Tavkhelidze, who took part in obtain­
ing some of the results of this paper. 

Note added in proof (April17, 1962). We have been able 
to show with the help of the corollary of Theorem 4 that graph II 
of Fig. 1 is also majorized by two graphs I with different 
arrangements of the external momenta, Thus the graph I of 
Fig. 1 majorizes all strongly connected graphs for nucleon­
nucleon scattering. 
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