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The liquid drop model is used to calculate the Coulomb and the surface energy of a nucleus 
for small arbitrary deformations of a spherical shape. Expressions are derived for the 
fission barrier and for the critical rotational energy at which the nucleus becomes unstable. 
The range of applicability of these expressions is determined. 

ExPERIMENTS on the fission of the compound = nfn 0 ( cp, e, 0) are spherical functions [ 4• 5] with 
nuclei formed in reactions with heavy ions and the normalization Dfu0( 0, 0, 0) = 1; azm are 
therefore having large angular momentum have parameters of the nuclear deformation relative 
aroused interest in the fission properties of ro- to a sphere. In the general case we have azm 
tating nuclei. In earlier work[1] an expression = f3zm + iyzm, where f3Zm and Ylm are real. 
was derived for the fission barrier of a rotating From the reality of r and the relation 
nucleus having small angular momentum. Hiskes [2] n/;;0(cp, e, 0) = ( -1 )mD~mo ( ([J, e, 0 ), where the 
recently determined the fission barrier in the asterisk denotes the complex conjugate, it fol-
same approximation as in [1] but without expand- lows that 

(2) 
ing in a series with respect to the ratio of the ro­
tational energy to the surface energy. Sitenko [3] 

has also investigated the effect of nuclear rotation 
on fission, assuming that the moment of inertia of 
a nucleus equals that of a liquid drop. In this way 
even for relatively small angular momentum the 
rotational energy becomes large enough to make 
fission possible, in disagreement with experiment. 

The change of Coulomb energy of a nucleus hav­
ing charge Ze for an arbitrarily small deformation 
represented in (1), while the volume and position of 
the center of gravity of the deformed nucleus re­
main unchanged, is given by 

The limits of applicability of the different ex­
pressions for the fission barrier were determined 
in none of the aforementioned publications; an un­
ambiguous comparison of theory and experiment 
has thus been difficult to achieve. The present 
work has two purposes: first, to determine the 
applicability range of an expansion of the total 
nuclear energy in small deformations of a sphere; 
secondly, to determine the characteristics of a ro­
tating nucleus that can be compared with experi­
ment. Exact expressions will be derived, which 
will be compared with other, approximate, calcu­
lations. The influence of rotation on fission has 
been discussed in [1]; we proceed here directly 
to determine the total nuclear.energy, the fission 
barrier, deformations etc. 

We shall regard a nucleus as a drop of uniformly 
charged incompressible fluid whose surface is de­
scribed by 

00 l 

r (0, cp) = R ( 1 + z; z; ()(zmDzm (0, cp) ). (1) 
z~om~-l 

Here r is the radius of the sphere as a function 
of the spherical angles e and cp; Dzm ( e, cp) 

[
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h Jm lm lo ( lm 
w ere lstrv = CstrvCsor!! Cstrv are Clebsch-
Gordan coefficients). [4,5J Summations will be 
carrie~ out over all values of the indices of af.I.IJ 
and I~bst allowed by the Clebsch-Gordan coeffi­
cients. 

The change of surface energy for unaltered 
volume and position of the center of gravity is 

897 

(3) 
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(see the Appendix ) 

A __ 4 R20 {-v (-1/ s (s + 1)- 2 LJ.Us - J! L..i rx,lrxs-1 2s + 1 --2 --

X Vs(s + 1)-t(t-1) Vr(r+ 1)-v(v+ 1) 

X v p (p + 1) - i (i - 1) V<'> (<'\ + 1) - f (f + 1) 

Here the upper sign pertains to 

lxx = ~Pm (Yl +Z2)dv, 

and the lower sign to 

lvv = ~Pm (X2 + Z2) dv. 

Rotational equilibrium occurs when the angular 
momentum is along a principal axis. If j is the 
total angular momentum of the nucleus the rota­
tional energy is 

Urot = j2/2J AA· 

The change of total nuclear energy is 

!J.u = l!..us + !J.u.c + l!..urot· (9) 

Before writing out an explicit expression for .6.u, 
we shall discuss the consequences of (5), (6), and 
the equations (A.3) and (A.4) of the Appendix. 

X Vs(s+1)-t(t-1) Vr(r+ 1)-v(v+1) 

"' j"'Y 1w-y (-1)y /vif}. 
- L..i r:J.stelrv(J.&fCI.pt slrv piof 2 (!) + 1 -S , 

Since we shall determine the positions and 
(4) ·properties of the extremal points of the energy 

surface, i.e., of the points for which 

0 is the coefficient of surface tension. 
The change of nuclear rotational energy is taken 

to be the change of rotational energy of a solid body 
having the same shape as the nucleus for constant 
angular momentum independent of the deformation. 
Let azm in (1) describe the nuclear shape with re­
spect to coordinate axes coinciding with the princi­
pal axes of inertia of the nucleus. The products of 
inertia are now zero: 

lxz '= Jvz = 0. 

From this condition we obtain relations for azm: 

(5) 

r:J.2-2 + 2 ~ Cl.tmCI.stf7;;t + 2 ~ r:J.tmr:J.st(J.rvf'/;:..tf~-:;~. + • • • 
= r:J.22 + 2 ~ Cl.tmCXst/7;,.,1 + 2 ~ r:J.tmrxstr:J.rvft;:,stf'f:yrv + • • • 

The principal moments of a solid body having 
the shape (1) with conservation of volume are 

1 1 {I 2 'V oo 
J ZZ = J; + (J.20 + C/.20- 5 L..J CXtmrxstftmst 

+ 2 2J r:t..tmr:f..stf7?rzst + • • •}' 

(6) 

(7) 

(10) 

and azm « 1, many of the parameters azm can 
be disregarded. Indeed, .6.u contains only even 
powers of azm with odd l; therefore (10) yields 
azm = 0 for odd l. other roots of (10) for azm 
with odd l do not contain a small parameter since 
.6.u includes only one quadratic term having a small 
parameter-the coefficient of a~w The same holds 
true for azm with even l but odd m, since it fol­
lows from (5) that l :=::: 4 for the quadratic terms 
in afm with odd m. 

Therefore .6.u is left with azm having only 
even l and m; these are complex quantities in 
general. Since .6.u is real it contains only even 
powers of y. Equation (6) is satisfied identically 
for f3zm in virtue of (2). For Ylm in conjunction 
with (2) we obtain an equation determining y22 in 
terms of Ylp. with l :=::: 4: 

Substituting this expression in .6.u, we find that 
(10) leads to Ylp. = 0, since the expansion in pow­
ers of Ylm begins with quadratic terms having 
l :=::: 4 whose coefficients are of the order of unity. 
Thus only f3zm with even l and m play an impor­
tant part in determining the extremal points of the 
total energy surface. 

The results are, of course, independent of the 
axial orientation of the angular momentum. How­
ever, Eq. (10) is easily solved when the angular 
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momentum j is along the Z axis. This equation 
is considerably more complicated when the angu­
lar momentum is along the X or Y axis. (In first 
approximation we then obtain two second-order 
equations in two unknowns or a single fourth-order 
equation in a single variable.) 

It is convenient to introduce the parameters 

X= 3 (Ze}2/10R = Z2/A j2!2Jo 
4nR 20 {Z2/A),cr ' Y = 4nR 20 ' 

where R = r 0A113 and A is the nuclear mass num­
ber; the energy is determined in units of 47TR20. 

If z = 1 - x is used as the small expansion 
parameter, it will be seen subsequently that y 
is of the order z 2, with {32JJ. ~ z. Then for j along 
the Z axis we have 

We obtain four extremal points in first approxima­
tion from (1 0) : 

~20 = -+z. ~22 = ±( :: (z•-fy), (12) 

~.2 = 0, ~20 = + ( z + y z2 + T y) . (13) 

~22 = 0, R 7 ( ,/ 2 ~ ) 
t'20 = 6 z - . v z + 7 y . (14) 

The properties of these points are determined, as 
we know, by the sign of the second derivative of u 
with respect to {320 and by the sign of the determi­
nant A composed of the second derivatives of u 
with respect to (3 20 and (3 22 : 

!! = ~ (z2 - ~l3~o- ~ ~~.). 

The solution (12) has A < 0, i.e., these are 
saddle points. For j close to zero (y- 0) these 
saddle points are located on the X and Y axes; 
they thus correspond to fission along the X and Y 
axes. For nonvanishing angular momentum the 
nucleus is not axisymmetric at these points. 

The solution (13) also has A < 0. Since (322 = 0 
the nucleus is axisymmetric at this point; it is 
elongated ( (320 > 0 ) , and its axis of symmetry lies 
in the Z direction. This is a saddle point for fis­
sion along the Z axis (the direction of the angu­
lar momentum). Since for this direction of fission 
the fission barrier rises with the angular momen­
tum (centrifugal forces now prevent increasing 
deformation), this saddle point will hereafter be 
disregarded. 

At the point (14) we have (3 22 = 0 and (3 20 < 0. 
The nucleus is thus an oblate ellipsoid of rotation 
with its axis of symmetry in the direction of j. At 
this point we have 

For y = %z2 = Ycr the determinant vanishes. For 
y < Ycr we have A> 0; therefore a minimum is 
located at the point (14). In other words, this is 
a point of stable equilibrium for y < y cr· As y 
increases and approaches y cr• the saddle points 
(12) approach the minimum (14), and all three 
points coincide for y = y cr· The solution (12) 
does not exist for y > y cr• since (322 here be­
comes imaginary. At the same time (14) does 
exist, but A < 0, i.e., a saddle point appears at 
(14). 

The nucleus therefore has no position of stable 
equilibrium for y > Ycr (the fission barrier van­
ishes), and fission occurs immediately. 

Having considered the principal fission prop­
erties of rotating nuclei in the zeroth approxima­
tion, we shall now determine corrections propor­
tional to z 4• The extremum of Au with respect 
to {34JJ. leads to the following relations (in first 
approximation (34JJ. depends on y only indirectly, 
through (320 and (322): 

(15) 

Substituting these values in (11), we obtain AU as 
a function of only (320 and (322 • In the next approx­
imation with respect to z the extremal points will 
remain the same as previously; only the magni­
tudes of the deformation and energy will change. 

For the position of the minimum we have 

_ _ 7 7 -.;--2--- 469 z3 

1322-0, l3.o- -z -- r z + 15yj7 + 765 ::~~,~~~ 6 6 r z2 + 15 y/7 

469 2 9 zy 47 
-765z --34yz•+15y/7 +51Y• 

and for the energy at this point, considering only 
terms ~ z 3, we have 

A . _ 49 3 49 2 "J/ 2 15 /7 uUmzn- rnz -rnz r Z + y 

+ -fzy -fy Yz2 + 15yj7. 

The nuclear energy at equilibrium must be 
known in order to determine the excitation energy 
since the total excitation energy is the sum of the 
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excitation energy of a spherical nucleus and ~Umin· 
The positions of the saddle points are determined 

from the following magnitude of the deformation: 

Q2 = ~ ( 2 _ ~ Y _ ~ z3 __ 1244 yz) 
1-'22 24 z 7 255 307 • (16) 

The fission barrier Ef is defined as the differ­
ence between the nuclear energy at the saddle point 
(12) and the equilibrium energy at (14), which in the 
case y ~ Ycr contributes considerably to the fission 
barrier. Including terms in z4, we have 

Et = ~Us.p.- ~Umtn = ~ z3 - .2.. zy - 5684 z4 
135 3 34425 

+ (-~ z2 + 2 y)-. I z2 + ~ Y _ 182~ z2y + ~ y2 
135 9 v 7 3060 12 

-~zs-.1 z2 +~Y +2069 zy-./z2 +~y. (17) 
34425 r 7 2295 v 7 

Equation (16) is used to determine the correc­
tion for y cr• because the properties of the extre­
mal points remain the same as in the zeroth ap­
proximation. Setting (16) equal to zero, we there­
fore obtain 

Y = Z... z2 (I - 004 z) 
cr 5 85 • 

(18) 

For this value of y cr the coefficient of {3~2 van­
ishes in the expression for the total energy, i.e., 
there is no stable nuclear state for this rotational 
energy (for a small deformation, in any event). 
From this expression we determine the range in 
which the total energy of a rotating nucleus can 
be expressed by a series expansion in the small 
deformation of a sphere 

z~85f504. (19) 

Thus in the case of rotating nuclei the range of ap­
plicability of this expansion is narrower than for 
a nonrotating nucleus, where 

(20) 

At first glance the foregoing result seems unex­
pected, since at the top of the fission barrier the 
deformation is smaller for a rotating nucleus than 
for a nucleus at rest. However, when we consider 
the origin of the large coefficient of z3 in (18), 
which determines the applicability range of our 
equations, we find that the value comes mainly 
from the large numerical coefficients in the ex­
pansion of the rotational energy with respect to 
the deformation. This expansion becomes unsuit­
able for relatively small a 2Ji.' since for 1- x ~ 0.1 
and y ~ Ycr we obtain a 20 ~ 0.1. We also note 

that {341-' does not depend explicitly on the rotational 
energy (15). 

We can expect on the basis of the foregoing that 
a different zeroth approximation, i.e., a nuclear 
shape with respect to which the computed defor­
mation can be regarded as small, will give better 
results. A more suitable zeroth approximation 
would, of course, be a nuclear shape taking rotation 
into account. This requirement is entirely reason­
able and evidently necessary, since in studying the 
behavior of the extremal points of the total energy 
surface one must know the expansion of the energy 
with respect to the deformation near these points. 
It is therefore obvious that with a sphere as the 
zeroth approximation correct results cannot be 
obtained for sufficiently large values of 1 - x and 
of the rotational energy. It is possible that with 
an ellipsoid as the zeroth approximation the prop­
erties of the extremal points can be studied over 
a broader range of x than for a sphere. However, 
in the case of an ellipsoidal nucleus results can 
be obtained only by numerical calculation. 

It follows from (19) that (17) has such a small 
range of applicability that it is invalid for most 
nuclei resulting from reactions with heavy ions. 
An expression suitable over a broader range of 
z is therefore required. For small rotational en­
ergy (y < y cr) the expansion of the fission bar­
rier in a small parameter must be valid for a 
broader range of z than in the case y ~ y cr• and 
in the limit y - 0 this region must coincide with 
(20). 

The series expansion of (17) in terms of y 
gives 

+ (- ~ ..!_ + 859) 2 
8 z 204 y . (21) 

This expression differs from the analogous for­
mula in [1], where an axisymmetric deformation 
was considered only in first approximation. More­
over, ~Umin was neglected in [1 J • 

The influence of rotation on the equilibrium 
configuration appears only in the ~ y2 term, since 
the nuclear deformation itself at equilbrium is 
~ y. The coefficient of y contains the first two 
terms of the expansion in z. The next two terms 
of the expansion are easily obtained. For this 
purpose it is more convenient to consider rotation 
of the nucleus around the X axis (or, equivalently, 
around the Y axis) instead of around the Z axis. 
Then, if the nucleus fissions along the Z axis, it 
appears from (8) and (9) that the deformation a 22 
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for a non-axisymmetric nucleus is proportional 
to the rotational energy y. Terms proportional 
to y2 are therefore obtained when a 22 is taken 
into account in (9). In order to obtain the succeed­
ing terms in the expansion of the coefficient of y2 

in (21), in addition to those already given, terms 
of the order a~0 a~2 must be included in the total 
energy (9). We can therefore assume a 22 = 0, and 
also that a 20 is independent of y, since such de­
pendence determines the next terms of the expan­
sion in y. 

The coefficient of y in this case therefore 
equals the rotational energy of the nucleus, which 
has the same shape as a nonrotating nucleus at 
the top of the fission barrier. The rotational en­
ergy when the angular momentum is along the X 
axis is proportional to (8): 

1 1 ( 1 29 2 551 3 4 
J X X = Jo 1- 2 ~20- ZS ~20 + 840 [320 - 7 ~20~40 

5 2 102 2 73611 4 ) 
- 9 ~40- 77 ~20~40 + 43120 [320 • (22) 

The nuclear deformation at the top of the barrier 
has been given with sufficient accuracy for the 
present case in [G]: 

~ 20 = 2.33z - 1.23z2 + 9.5z" - 8.05z4 + ... , 
~4o = 1.94z2 - 1.69i' + .... 

With these values substituted in (22), we obtain 
from (21): 

Er = 0.726z3 - 0.330z4 + 1,922" + ... 
+ y (-1,17z- 5.03z2 + 6,87z3 - 18.8z4 + ... ) 
+ y2 (-0.625/z + 4.21). 

In order to determine the angular distribution 
of fission fragments and to calculate the depend­
ence of the fission width rf on the angular mo­
mentum [7•8] we must know the moment of inertia 
with respect to the axis of symmetry: 

} = f- = + (1 + 2.33z + 5.44z2 + 0,83z3). 
n zz o 

The moment of inertia with respect to an axis 
perpendicular to the axis of symmetry is 

-}- = /-- = j-(1- 1,17.<- S,03z2 + 6,87z3). 
j_ XX o 

APPENDIX 

First-approximation terms in the Coulomb and 
surface energies (i.e., terms of the order a~J.t and 
a~W which were considered in [!, 2]) can be ob­
tained from the dependence of the respective ener­
gies on the deformation of an axisymmetric nu-

cleus. In this approximation the energy has the 
form aa~0 + ba~2 + ca~0 + da20a~2 • Since the en­
ergy is, of course, independent of the coordinate 
system, the coefficients are determined uniquely 
by the condition that for the deformation repre­
sented by 

(in which case the nucleus is axisymmetric with 
its axis of symmetry along either the X or Y 
axis ) the energy must be that of an axisymmetric 
nucleus with its axis of symmetry along the Z 
axis ( a 20 = a 2, a 22 = 0 ). 

For terms of the order a~ ( n 2:: 4) or a~J.t 
( s 2:: 4) the foregoing procedure for determining 
coefficients of the energy expansion in terms of 
azJ.t is unsuitable. The symmetry condition en­
ables us to obtain only two relations between the 
coefficients, whereas in this case more than two 
coefficients are required. 

The Coulomb energy of the ·nucleus is 

(A.1) 

where (/li. the internal electric potential of the nu­
cleus, satisfies the equation 6.cpi = - 47rp (where 
p = Ze/ ( 4rr /3) R~ is the charge density). The potential 
(/le external to the nucleus satisfies the equation 
flrpe = 0. We shall derive the potential in the form 

_ 2 2 [ r2 '\;1 ( r )I l <pi(r,6,<p)-:r:rtpR - R" + LJ At,m R Dtm(6,<p), 
l, m J 

_ 2 2 '\;1 ( R )H-I <pe (r, 8, <p) - 3 :rtpR LJ Ct. m r Dtm (8, <p), (A.2) 
I, m 

where the coefficients Azm and Czm are deter­
mined from the boundary conditions for the poten­
tials on the nuclear surface S. Assuming, further­
more, that all azm « 1, we can obtain Azm and 
C . . (A A<o> A(i) lm as expansiOns m azp. lm = lm + lm + .... ' 

A~~ is the i-th approximation). 
We present here all coefficients Czm determin­

ing the extranuclear potential required to derive 
the probability of charged particle emission: 

q~>= 2, 
C(l) 6 

lm = 21 + 1 !Xfm, 

Substituting (A.2) in (A.1) and using the expres­
sion for the product of D functions, 

s+r 
D,, (6, <p) Dst (8, <p) = ~ ~~~~~s+v D.,l'- (8, <p), 

w=lr-sll 

integration over the volume of the nucleus now 
gives the Coulomb energy as a function of the de-
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formations azm with l ~ 0. Volume conservation 
enables us to eliminate a 00 : 

_ "' [00 1 "' /wy /00 CXoo - - .LJ CX[m'Xst lmst- 3 .LJ CX,!m CXst CXrv lmst wyrv• 

l, s+O l, sr+O (A.3) 

Here the term proportional to a 4 vanishes. The 
conservation of the position of the center of grav­
ity enables us to determine a 1J.' in terms of the 
other azm: 

3 "' /1-[L + UlfL = - z .LJ CXst CXrv strv • • • (A.4) 

Equation (3) is obtained with the aid of (A.3) and 
(A.4). 

The surface energy is proportional to the nu­
clear surface areaS: 

u5 =OS, 

where 0 is the coefficient of surface tension. The 
surface area in spherical coordinates is 

S = ~~ rd6dcp{[r 2 + (or/o6)2 l sin2 6 + (or/acp)2}'1•. (A.5) 

We use the expression for the angular derivatives 
of the D function:[ 9]* 

(i ~ + ctg 6~)D1m (6, cp) 

= ie1'~'Jf(l(l+1)-m(m-1)Dt,m-I(6,cp), 

(- i ~ + ctg 6 ~) D 1m ( 6, (jl) 

= ie-1'~' Jfl (l + 1)- m (m + 1) D,, m+1 (6, cp) 

and integrate the radical in (A.5) after expanding 
it in a series in azm; this gives the change of sur-

*ctg =cot. 

face energy. The final expression for the change 
of surface energy (4) is obtained with the aid of 
(A.3) and (A.4). 

In conclusion I wish to thank B. T. Ge'ilikman, 
D. P. Grechukhin, and V. M. Strutinskil for valu­
able discussions. 
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