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The equations of motion of macroscopic quantities characterizing the nonequilibrium state 
of a many-particle system with a discrete energy spectrum and subjected to the strong 
action of a pulse generator are deduced by solution of the Schrodinger equation for the sys­
tem. Simple algorithms are derived for the operator transformations related to pulse exci­
tation. The general properties of pulse generators and of physical systems leading to the 
appearance of oscillatory and stationary response signals of the excited particle system 
are established. As an illustration of the application of the general relations, the nonequi­
librium states of electron and nuclear spin systems produced by crossed magnetic-sound 
excitation are investigated.. The prospects for the development of pulse techniques in the 
study of electric and orbital magnetic moment systems are discussed. 

1. INTRODUCTION 

PHYSICAL systems consisting of a large number 
of weakly interacting particles possessing a dis­
crete energy spectrum and easily excited by any 
external action can be used as powerful coherent 
sources of radiation and as the amplifiers of mag­
netic [1] and light [2] energy or of the energy of 
phonons. [3] They are of great interest because 
of possible practical applications. 

While the reaction of such systems to an arbi­
trary stationary external action has been studied 
in a number of researches, [4•5] the behavior of 
physical systems under the pulsed action from 
an external source has been considered only in 
the cases of magnetic, [s, 7J acoustic, [B, 9] and 
double-pulse [10] excitation of a nuclear spin­
system. 

The present paper is devoted to the theoretical 
investigation of the behavior of a system of weakly 
interacting particles, each of which interacts 
strongly for a short time interval with an external 
pulse generator. The concepts of the ''weakness" 
of the internal interaction and of the ''strength'' 
of the external action mean that the external ac­
tion succeeds in changing the state of the particles 
significantly in a time interval t which is much 
shorter than the characteristic time T of interac­
tion between the particles themselves, while the 
external action should not disrupt in this case the 
discreteness of the energy spectrum of the phys­
ical system or the possibility of selective excita­
tion of the system .. 

If it is further assumed that the interaction 

operator of the system and the pulse generator 
is a one-particle one relative to the excited phys­
ical system, then a general solution for the time 
interval ( 0, t) can be constructed for the Schrod­
inger equation for the conservative combination of 
"system +pulse generator," which does not de­
pend on the specific nature of the system and the 
generator. 

This solution can be used for the calculation 
of the macroscopic value of an arbitrary physical 
quantity that is related to the systems considered 
by us. By the same token, the necessary general 
conditions can be found which must be satisfied by 
the physical systems and pulse generators suitable 
for the creation of coherently functioning quantum 
devices. 

The broad generality of the solutions to prob­
lems of the pulse excitation of physical systems 
is due to the possibility of neglecting the effect 
of the form factor g ( v ) of the spectral lines, 
which describes the internal interaction in the 
substance. To be precise, consideration of g( v) 
makes the exploitation of the theory of the con­
tinuous excitation of the substance difficult and 
is responsible for the disparity between the ex­
perimental and theoretical data. 

Strong interaction between the system and the 
pulse generator leads to the result that the energy 
absorbed by the system ceases to be a satisfactory 
characteristic of the excitation process, and the 
different oscillating macroscopic quantities de­
scribing the excited state of the system acquire 
a fundamental significance. 

It should be kept in mind that the conditions 
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for obtaining oscillatory response signals from 
an excited system are much more severe than the 
conditions for absorption of energy of the system 
from the pulse generator. This is a distinguish­
ing property of nonequilibrium states obtained by 
the pulse method. 

It is easy to understandthat the pulsed excita­
tion method is more varied than the continuous 
one, since short-lived excited states of the system 
are not observed in the latter case. It suffices to 
show that the pulse method in magnetic spectro­
scopy allows us to study processes with a charac­
teristic time T"' 10-8 sec. [11] 

We shall illustrate the general formulas that 
we obtained for computation of the mean values 
of quantities relative to nonequilibrium physical 
systems by the example of magnetoacoustic exci­
tation of electron and nuclear spin systems. How­
ever, these formulas also remain valid in the case 
of other sources of excitation of matter, as, for 
example, in the case of the excitation of paramag­
netic crystals by a flux of cold neutrons or a co­
herent light beam from a laser. 

2. SOLUTION OF THE SCHRODINGER EQUATION 

Let us consider a closed system described by 
the Hamiltonian 

3CsF = ~ A5B}, (1) 
a.,y 

where JCs, JCF, and JCSF describe the matter, pulse 
generator and their interaction, respectively. The 
indices S and F denote the fact that the given 
quantities depend only on the variables of the ma­
terial and of the generator. 

At the time t = 0, let the state of the system JC 
be described by the function 'IF( 0). Then, at a 
later time t we have 

W (t) = L (t) W (0), (2) 

where the evolution operator L(t) is found by a 
solution of the Schrodinger equation 

in ~ L (t) = :JeL (t) (3) 

for the boundary condition L ( 0) = 1. It follows 
from (3) that 

L (t) = exp [- itn -l;Jt]. (4) 

For simplicity of subsequent calculations, it is 
convenient to expand the exponential in (4) by the 
Feynman formula: [12] 

exp [- itn-1:1£] = exp [- itn-1:Jfp] exp [- it1i-1:J£sl 
I 

x exP[-in-1 ~:J£sF (t') dt'], (5) 
0 

where 

,"ftsF (t) = exp [in- 1t (:Jfs + ;JCp)]:JesF 

Xexp [- ifn-1 (:Jfs + :JeF)J. 

The mean value of the operator Q at the mo­
ment of time t is computed from the formula 

( Q (t)) = Sp {q0L (t)-1 Q L(t)}, 

(6) 
where (3 is an operator describing the populations 
of the energy levels of the system JC at the time 
t = 0. If Boltzmann statistics are valid, and there 
exists a unique temperature T for the entire sys­
tem JC, then (3 = 1/kt, where k is the Boltzmann 
constant. 

For calculation of transformations of the type 
L(t )-1 QL(t ), the following formulas are useful: 

Q (t) = exp{in-1t~KvPKv} Q exP{- in-1t~KvPKv} 
u u 

~ iwabt 
= LJ KaQKbe • 

a, b 

where Kv are projection operators, P is the di­
agonal operator, KvPKv is an operator, the non­
vanishing part of which is a multiple of the unit 
operator, and Ra = [Sp Kal-1• 

In the general case, we have 

Q (t) = exp [in-1tP l Q exp [- in -1tP l 

oo n 

= ~ (il~~1 )n ~ (- l}"C~Pn-v QPu 
n=O V=O 

oo 2n 

= ~ ( -- 1 t (t~;:~~n ~ (- I)" C~np2n-v QPv 
n=O V=O 

oo 2 + 1 2n+1 

+ i ~(-It~~~-~~)! ~ (- I)u 
n=o v=o 

(7) 

X ~C~n+Ip2n+1-uQPu. (8) 

Let P = Pab + Pba• where Pab = KaP'Kb, and 
~a = KbP'Ka. Then 

(Pab + Pbar = laa.{Pab Pbat + lbb (Pba Pabt. (9) 

(Pab + Pba)2n+I = lab {PabPbat Pab + lba (PbaPabtPba 
• 

(10) 

where the symbol 1a(3 is introduced for the desig­
nation of the subspace separated out by the pro­
jection operators Ka and Kf3, while this subspace 
is filled up with the nonvanishing part of some ma­
trix KaBKf3. 

Substituting (9) and (10) in (8), we get 
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oo 2n-2 

Q (t) = ~ (- 1 t u~;:~~n { ~ Gn [ 1aaA (2n-k)/2 QaaA kj2 

n=O k=2 

y 

2n-3 

+ 1yaQyaAn +(a<-> b) I- ~ C~n 
r=3 

+ 1abP abB(2n-r-1)12 QbaA (r-1)12 P ab -t-(a<->b) J 

- ( 1aaPab QbbBn-1Pba + 1aaPabBn-1 QbbPba 

2n-2 

X { ~ C~nH [ 1aaP abB<2n-k>!2 QbaA k/2 

k=2 

2n-1 

_ ~ C' [1 A<2n+t-r)/2Q B<k-·1ll2p 
L.i 2n+1 aa ab ba 
T=3 

+ 1aoA(2n+t·-r)/2 QaaA(r-l)/2Pab +(a<-> b) I 

+ ~ !layPabBnQby -1yaQybBnPba +(a<-> b)J}, 
y 

For ~ > TJ, the operator Q(t) does not have di­
agonal blocks. For TJ = 0 and arbitrary ~, the 
operator Q(t) possesses diagonal blocks. 

3. If Eq. (8) does not depend on k or (11) on 
k and r, then Q(t) is expressed in terms of the 
sine and cosine of the matrix argument, which, 
in the case of an argument in the form of a diago­
nal matrix, reduces to the usual trigonometric 
functions. 

4. Equation (11) divides into two parts, which 
differ essentially from each other. The first part, 
which depends on the matrix cosine, describes the 
change in the nonvanishing matrix blocks of the 
operator already present, but does not produce 
new, nonvanishing submatrices. The second part, 
which depends on the matrix sine, characterizes 
new properties acquired by the matrix Q( t) result­
ing from the transformation L( t) QL ( t )- 1• For 
example, diagonal matrix blocks produce nondiag­
onal blocks and, vice versa, nonzero nondiagonal 
matrix blocks appear between the new subspaces. 
At the same time, the very structure of the blocks 
KaQKb can change, i.e., blocks with diagonal 
structure can transform into blocks with nondiag­
onal structure. 

The foregoing properties of the transformations 
(7) and (11) characterize interesting physical trans­
formations, which come about for a system of many 
particles in its pulse excitation by an external 
source. We shall illustrate these properties by 

(11) the example of the single particle model studied 
in the present research. 

where k is an even number, r is an odd number, 
and the symbol (a-b) denotes that one must 
add an expression to the foregoing which is ob­
tained from it by replacing a by b. 

1. We shall now discuss some general proper­
ties of the transformations (7) and (11). It follows 
from (7) that Q(t) can have oscillating matrix 
blocks if the operator Q possessed nondiagonal 
matrix blocks prior to the transformation, i.e., 

(12) 

2. Let the indices a and b take on the values 
1, 2, ... , n. We shall assume that for the operator 
Q the only such non-zero blocks KaQKb are those 
for which I a - b I = TJ, while the corresponding 
condition for the operator P has the form I a'- b' I 
= ~. It is easy to see from Eq. (8) that Q(t) can 
have diagonal blocks if TJ is divisible by ~, a fact 
which we denote by 

(13) 

In particular, TJ = ~ = 0 corresponds to the identity 
transformation. 

3. SINGLE PARTICLE APPROXIMATION 

Let 
~ i ~ lj :Jes = :Jeo + IfC1 = L.J :Jeo + L.J ;;{,1 • 

i I> i 

Q = ~ Qi, A~ = ~As;. (14) 

where JC0 is the fundamental Hamiltonian, JC1 is 
the perturbation; i, j = 1, ... , N are the indices 
for designating the particles, and the time T 

characterizes the relaxation process brought 
about by the interactions JC1• For sufficiently 
high temperatures T and sufficiently short times 
t of the pulse action, characterized by the inequal­
ities 

(15) 

we obtain, with account of (5), (6), (14), and (15), 

I < Q (t)) = N < Qi (t)) = N Sp {q~Li (t)-l QiLi (t)}, (16) 

Li (t) = exp r- iii -1t:Jf F I exp r- itn -l ;;e{r I 
t 

xjexp [- in-1 ~ L A~ (t') B} (t') dt'], 
0 a, Y 

(17) 
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q~ = exp [- ~~~] {Sp exp [- ~~~]}-1 , 

As1 (t) = exp (in-1 t~b l Asi exp [- in-1t~~ l. 

(18) 

(19) 

The expression JesF contains factors of two 
types: the A~ describe the internal parameters 
of the system JCs which can be changed by the ex­
ternal influence JCF, and the B} characterize the 
external effect conjugate with the A~. For ex­
ample, in the case of paramagnetic resonance, the 
A~ and B1 describe the components of the mag­
netic moment of the spin system and of the vari­
able magnetic field, respectively. [G, 7] For acous­
tic magnetic resonance on nuclei these quantities 
correspond to the components of the quadrupole 
moment tensor of the nucleus and the components 
of the deformation tensor, which are associated 
with the ultrasonic propagation. [S,S] While the 
A~ are usually operator quantities, the B} are 
described by classical functions. The latter is 
due to the fact that the pulse generator has a lim­
ited number of degrees of freedom and an extra­
ordinarily high degree of excitation. [ta] 

. Let. Ea be the eigenvalues of the operator 
JC~ = JC~ (i, j = 1, ... , N), where Waf3 = n.-1(Ea- E13) 
and 

(20) 

i.e., there are no equidistant pairs of levels in the 
spectrum of the operator JC~. 

With sufficient generality, we can write 

L} A~B} (t) = R cos Wabt + D sin Wabf, 
ct,Y 

whence, with allowance for (20), we obtain 

t 

~ L} A~i (t') BJ (t') dt' = t (Pab + Pta), (21) 
0 ct, y 

Pab =tKa (R-iD) Kb, Pta= tKb (R + iD) Ka. 

(22) 

The relations (15)-(19) describe the single particle 
approximation, while the formulas (20)-(22) are 
the conditions for maximum selectivity of the ex­
citation. 

Let a succession of k-pulse generators of dif­
ferent type act on the system JCs over the time 

k 
intervals .L; ~tn = t. Application of Feynman's 

n=1 

theorem to the expansion of the exponentials in 
(17) gives the result 

L1 (t) = exp [-i1i-1 t~Fl exp [- i1i-1 t~bl 
k 

X II exp[-i1i-1Mn<Panbn+Pbnan)], 
n=l 

(23) 

where the exponentials in the product are written 
from right to left in the order in which the pulses 
acting on the system occur. 

4. CLASSIFICATION OF THE QUANTITIES CHAR­
ACTERIZING THE NONEQUILIBRIUM SYSTEM 

We introduce the following terminology. If, 
after the pulse generator is shut off, the quantity 
( Q ( t + t 0 ) > executes oscillations at a later instant 
of time t +to with frequencies wa{3 corresponding 
to intervals of energy in the unperturbed spectrum 
of particles j, then we shall call the correspond­
ing signal, the free induction signal (IS). If the IS 
decays as the result of some reverse process and 
repeated pulse action leads to a regeneration of 
the signal, then this responding reaction of the sys­
tem will be called the echo signal ( ES). In the ab­
sence of oscillations with frequencies Waf3• the 
mean value of ( Q ( t + t0 )) will characterize the 
polarization of the quantity Q. We can then write 
that 

< Q (t + i 0)) = < Q (t)) f (t + t 0), (24) 

where f ( t + t 0 ) is a certain correlation function, 
which is equal to unity at t 0 = 0. If quantum tran­
sitions with a change in the unperturbed energy 
of the particles are required to disrupt the non­
equilibrium value, then the parameter Til of the 
function f ( t +t0 ) characterizes the longitudinal 
relaxation. In the opposite case, there is a single 
relaxation time, or the variation of the function 
f (t +t0 ) is described by a transverse relaxation 
time Tl, where Tl ~Til (see [7J). 

Let Q depend only on the variables of the sys­
tem Jes. Then the factor exp [- m-1 t3CF] in (23) 
does not act on Q and the oscillations of the quan­
tity Q(t) can be produqed only by the diagonal 
operator exp [- ili-1tJC!J. Therefore, the induc­
tion and echo signals can be observed only for the 
values of Q which satisfy the condition (12). For 
example, in the case of axial symmetry of the spin 
Hamiltonian of paramagnetic particles JC0 the 
magnetic IS and ES can be observed only on the 
components of the magnetic moment which are 
directed perpendicular to the axis of axial sym­
metry. 

In order that the quantity (Q(t)) exist, the 
operator Q(t) ought to have nonzero diagonal 
blocks. Therefore, in correspondence with the 
structure of the operator Q, the type of exciting 
pulse Pab + Pba should be selected on the basis 
of the rule (13) .. For example, in the case of axial 
symmetry of JC~, the·transverse components of 
the magnetic moment have matrix elements only 
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between states with a change in quantum number 
of illn = ± 1, i.e., TJ = 1. Therefore, the ultra­
sonic excitation which produces transitions 
illn > ± 1 (TJ > 1 and ~ is not divisible by TJ), does 
not excite IS and ES. [8•9] At the same time, for 
the operator of the electric quadrupole moment 
of the nucleus illn = ± 2, TJ = 2, and pulse excita­
tion for ~ = 1 and 2 produces corresponding elec­
tric quadrupole induction and echo signals. [8] For 
the longitudinal component of the magnetic mo­
ment TJ = 0, and the mean value of this quantity 
can be changed by pulse interaction for arbitrary 
values ~ > 0. [9] 

Interesting phenomena are observed for mul­
tiple pulse excitation of the system 3Cs. Let Tlo• 
referred to the operator Q at t = 0, be equal to 
unity and the system JCs be excited successively 
by pulses of the type (23), where ~n = n (n = 1, 
... , k) for the n-th pulse. In accord with (13), 
the first pulse can produce the signal (Q(~t1)) ;ot 0, 
while, simultaneously, the blocks TJ1 = 2 appear 
for the operator Q ( ~t1 ). Therefore, after the 
second pulse, one can obtain the signal from the 
blocks Tit = 2. After the n-th pulse, one can ob­
tain the signal from the blocks Tin-t = n and in 
the same way study the properties of the interac­
tion of the pulse generator ( ~ = n) and the system 
JCs. For example, an ultrasonic pulse cannot bring 
about the appearance of IS and ES, but "magnetic 
+ ultrasonic" pulses can. [t4] Such a "recurrence" 
method can be used for the study of interactions 
with large ~. 

5. MAGNETIC-SOUND EXCITATION OF A SPIN­
SYSTEM IN THE ABSENCE OF A CONSTANT 
MAGNETIC FIELD 

In dielectric paramagnetic crystals, discrete­
ness of the energy spectrum of the spin system 
3Cs frequently arises from the Stark energy of 
the magnetic particles in the internal crystalline 
electric field. Such substances, are characterized 
by a wide range of dynamic properties and if used 
in quantum devices they call for strong static mag­
netic fields. We shall investigate the possibility 
of excitation of such a system by a double pulse. 

Let 

(25) 

where s is the effective spin and D is a constant 
of the axial crystalline electric field. [15] 

Except for the eigenvalue Em=o all the Em are 
doubly degenerate for even s and correspond to 
the eigenfunctions I ± m ), where m is the modulus 
of the magnetic quantum number. In what follows, 

we shall exclude from consideration all cases in 
which the matrix elements ( a I m = 0) play an 
important role. 

Let the spin system be acted on successively 
by the pulsed variable magnetic field 

R cos ffiabt + D sin ffiabt 

=g_l~ [sxHxCOSffim+1t + SyHy sinrom+1t) (26) 

and the sound field 

R cos ffiabl + D sin ffiabt 

= (Al Q±l + B1v±1 + A2Qt2 + B2v±2) cos romt, (27) 

where 

Wm+l = fi-l (Em+2- Em+!), Wm = n-l (Em+l- Em). 

{3 is the magneton, g1 is the spectroscopic split­
ting factor, Ha are the amplitudes of the variable 
magnetic field along the a axes. 

The phenomenological coefficients At, A2, B1, 

and B2 depend on the configuration of the acoustic 
field, the sound intensity, the elastic constants of 
the crystal and the coupling between the energy of 
the system JCs and the deformations of the crystal, 
brought about by the propagation of the ultrasound. 
In the case of cubic crystals, explicit expressions 
for these coefficients are well known (see [8]), 

while the general case is discussed in [iS]. 

In accord with (22), (26), and (27), the non-zero 
blocks of the matrix have the form 

-(m+1) (m+1) 

Pm,m+l = -m h [2 

m la 14 

-m m 

Pm+l,m = -(m+1) t 1 t 3 (28) 

(m+ 1) z• 
2 z* 4 

In the case of circular polarization of the mag­
netic field and the transition I m) -- I m + 1 ), 

/1 = /2 = la = 0,/4 = 2a =+g..L~H[(s+m+ l)(s-m)J'1•, 
rom= n-1D (2m+ 1). (29) 

For linear polarization ( Hy = 0 ) of the mag­
netic field, we have 

(30) 

In the case of sonic excitation, we have 

l1 =-a~, /2 =a;, la = a2, /4 = al> 

oc1 = (s, m \A1 Q±l + B1v±l\ s, m + l), 
a2 =(s,m/A2 Q±2 +B,.v±2/s,-(m+I)), (31) 

where ( s, m I s, m + 1) denotes the matrix element 
between the states Is, +m) and Is, +(m + 1) ). 
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Let an ultrasonic pulse of frequency wm act on 
a spin system with magnetic moment f." over the 
time interval (tm+1, tm+1 + tm ), and a pulse of 
the variable magnetic field of circular polariza­
tion and frequency wm over the interval ( 0, tm+ 1 ). 
Applying Eqs. (6), (18), (23), (29), and (31), we find 
that at the time tm + tm+1 the macroscopic value 
of the magnetic moment of the spin system is de­
scribed by the formula 

(f.L (tm + i m+t) )~~fm+1; m+t, m+2 

= N~Rm+1. mH !Atz + (A21 + A22) X+ (A at+ Aa2) y l , 
2s+t _1 (32) 

Ra.~ = (e-Ea./kT _ e-E~/kT) [ ~ e-Ey/kT] , 

y 

X [m-!-1 +m(Ja.2J2-Jcrt!2)]} 
Ja.1 I" + I a2 !2 ' 

A21 = -<m +11m+ 2) I g.l I 

X sin 48m+t fm+t COS 28~) fm sinwm+t (tm + fm+1) 

+ (m I m + 1) ( ll)(1l 2 + 11)(212)-'1' sin 2e~ltm 

X {coswm (tm -t- tm+1) [lm(a~) [2g_L 

(33) 

+ f (l-cos48m+1 tmf-1) I g.l Ill+ sinwm (tm + tm+1) 

X [ Re (a:) +(cos 48m+1 tm+1 - 1) I g.l I]} , (34) 

A22 = tl (m -+)+I g.l I (I r>::1l 2 +I rx2l 2f 1 ( 1- COS 48m+1tm+1) 

X (cos 28~)tm -1) Re (ex: a;), 

A31 = (m + 11 m + 2) I g.l I 

X sin 48m+1 tm+t cos 28~)tm COSWm+1 (tm + fm+1) 

+ <ml m + 1) (ia112 +I rx212)-'1' 

X sin 28~)/m {cos Wm (tm + tm+1) Re (I)(~) [2g.l 

+ T (1 -cos 48mH tm+1) I g.l I]+ sinwm <tm + im+1) 

(35) 

X [lm (lX~) + (1 -COS 48m+1 fm+1) I gj_ IJ}, (35') 

where (a! {3) = ( al sx I {3), o(m-%) is the Kro­
necker symbol, a* and a are complex conjugate 
numbers. 

The parameters of "rotation" of the compo­
nents of the magnetic moment under the action of 
the pulse generator are determined by the for­
mulas 

e.= n,-1 1 0( I= i+ n,-1gj_~Hx [(s+ 8 + 1) (s- e)J'1•J, (37) 

e~J) = n,-1 <I 0(112 +I 0(212/ 1', (38) 

where a 1 and a 2 are computed from (31). 
If the variable pulsed magnetic field of circular 

polarization acts in the time interval ( tm, tm 

+ tm+1) and the ultrasonic field in the time in­
terval ( 0, tm ), then we get in place of (32) 

= N~ [A3z + (A4t + A42) x +(Au+ A62) y ], (39) 

Aa = T g 11 [ 1 -COS 48m+1 fm+1l 

X [ + (1 -- COS 28~) lm) Rm, m+1 + Rm+l. m+2], (40) 

A41 =- (m +11m+ 2) sin48m+t tm+J sinwm+1 (tm+1 + tm) I gj_ I 

X [f (1- COS 28~) fm) Rm, m-j-1 + Rm+l, mHJ , (41) 

A42 = 2 (m I m + 1> gj_ (I 0(11 2 + 10(212)-'1'sin2 e~) fm COSWm 

.X \(tm+1 + tm) Jcos 28m+ I tm+1 lm (a~) Rm, m+1 , (42) 

Aiil = (m + I I m + 2) sin 48m+1 tm+t cos Wmtl (fm+t + tm) I gj_ I 

Aro2 = 2(ml m+ 1)gJ. 1/1)( 1 1
2 + la2 j2]-';, 

X sin 28~) tm cnswm (tm+1 + tm) 

X COS 20m+1 fm+1 Re (lX~) Rm, m+1 . 

(43) 

(44) 

After the pulse generator is turned off, the sig­
nals and the polarization described by Eqs. (32) 
and (40) will be damped according to (24). 

We shall stop to consider the physical content 
of Eqs. (32)-(44). 

1) Comparison of (32) and (40) shows that the 
result of the action of two pulses depends essen­
tially on the order of the pulse sequence. This 
follows directly from Eq. (23), and is brought 
about by the fact that, in a change of order of al­
ternation of the pulses, the magnetic and sound 
fields "see" different initial conditions of the spin 
system. Therefore, the information obtained by 
the pulse technique is proportional to the factorial 
of the number of successive pulses. 

2) The terms (33) and (40) describe the polari­
zation of the magnetic moment along the direction 
of the axis of axial symmetry of the crystalline 
electric field, which arises only as the result of 
the action of the pulse excitation, since for tm 
+ tm+i = 0 we get A1 = A3 = 0. For low tempera­
tures, in the region .kT « D, the pulse method 
allows us, in the case (33) and especially in the 
case (40), when the mean value of the operators 
is proportional to Rm,m+i + Rm+1,m+2 = Rm,m+2• 
to obtain the absolute polarization of the magnetic 
moment. Since :on-1 - 2000 Me for the spin sys-

tem of I127 in certain diamagnetic crystals, [17] 
the absolution nuclear polarization p can be 
achieved even for T- 0.1°K, while the value of 
p does not depend on the character of the internal 
interaction and is preserved during the longitudinal 
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relaxation of the nuclear magnetic moment. 
3) The terms A21 and A31 describe the macro­

scopic components of the magnetic moment of the 
spin system, oscillating in the xy plane. These 
components bring about the appearance of signals 
of free magnetic induction. The first component 
in A 21 oscillates with the frequency wm+1 and 
contains the factors 40m+1 tm+ 1 and cos 2e#{tm, 
i.e., the appearance of this component is due to 
magnetic excitation and the value of the corre­
sponding signal is modulated by the sound pulse. 
The second component is brought about by sonic 
excitation, where the character of the modulation 
of this signal by the variable magnetic field de­
pends on the sign of the g factor. The components 
in A31 have a similar meaning. 

4) The terms A 22 and A32, which are different 
from zero only for m = 1;'2, describe the polari­
zation of the magnetic moment in the xy plane 
and are produced by the combined action of the 
sound and magnetic pulses, since the separate 
pulses do not result in the appearance of non­
oscillating macroscopic components of fJ. perpen­
dicular to the symmetry axis of the crystalline 
field. In contrast to the polarization along z, the 
nonequilibrium values of A22 and A32 decay after 
the time of transverse magnetic relaxation and 
are therefore very unstable. 

5) The terms (A41 , A51 ) and (A42 , A52) describe 
the free induction signals at frequencies wm+1 
and Wm. Factors of the type (aRm,m+1 
+ Rm+1,m+2) characterize the intensification 
of the signals originating under double pulse 
excitation. 

6) In view of the small wavelength of the hyper­
sound, it is difficult to put the sample inside one 
loop of the standing wave. Therefore, in (32) and 
(39), all the terms containing the factor Re ( ak) 
or Im ( O!k) explicitly vanish upon summation over 
the particles inside the entire sample if an even 
number of loops of the sound wave is contained 
inside the specimen. If the number of loops is 
odd, then the number N in this formula enumer­
ates the magnetic particles over the sample in­
side a single loop of the standing sound wave. 

On the other hand, terms of the type (A41 , A51 ) 
and the first components in (A21 , A31 ), for which 
the sound vibrations of the crystal play the role 
of modulator of the intensity of the signals from 
magnetic excitation, describe volume effects in 
which the corresponding signals possess high in­
tensity, i.e., the intensity of the usual induction 
and echo signals in the magnetic excitation. [6,11] 

Since the time of transverse magnetic relaxa­
tion in nuclear and dilute electron spin systems 

changes in the range 10- 5-10- 2 sec and 10- 8-1o-6 

sec, respectively, the length of the acoustic pulse 
can be made much shorter than these times if the 
surface of the crystal is displaced a distance of 
10- 7-10- 8 em under the action of the sound vibra­
tions. [8] Different methods of calculations of the 
quantities ak are shown in [16] 

6. CONCLUSION 

The nonequilibrium states of systems with dis­
crete energy spectra are of interest from the point 
of view of obtaining "negative" temperatures, of 
investigation of relaxation processes and of pulse 
spectroscopy. 

The possibility of obtaining nonequilibrium 
states of the system and in the same fashion, 
"negative" temperatures, reduces to the realiza­
tion of the conditions 

't'~t, et = n, (45) 

where the further free development of the state of 
the system determines the dynamic constants of 
the system. 

The task of pulse spectroscopy is to determine 
the constants e of the interaction between the pulse 
generator and the different degrees of freedom of 
the system from the initial intensities of the induc­
tion and echo signals. Hitherto the "indicators" 
of the value of. e were the macroscopic compo­
nents of the magnetic moment of the spin system, 
and the possibility of using magnetic "indicators" 
were far from exhausted. For example, a possi­
bility of studying the interaction of the crystalline 
electric field with the electron and nuclear spin 
magnetic moment follows from (32) and (39). It 
follows from the results of Bloembergen [18] that 
application of pulsed variable electric fields 
makes it possible to study the covalent bond in 
molecules. 

It follows from the general relations (5) and 
(11) that the application of the pulsed light beams 
radiated by lasers,makes it possible to investi­
gate and use for practical purposes systems of 
electric moments in crystals in addition to the 
spin systems. On the other hand, the "magnetic 
indicators" of the system of orbital magnetic 
moments can be used for the measurement of 
the intensity of flow of cold neutrons passing 
through matter, while the nonequilibrium states 
of such systems of orbital moments can be used 
as quantum neutron accelerators. 
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