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The peculiarities are investigated of ultrasonic absorption in superconductors, which are 
associated with two mechanisms of phonon scattering: absorption of the phonon by an elec­
tron and the decay of the phonon into a pair of quasi-particles. It is shown that the deriva­
tive of the absorption coefficient with respect to the temperature is finite at the critical 
point. In the isotropic model, the absorption coefficient undergoes a finite jump below the 
transition temperature; however, this jump is absent in an anisotropic superconductor. For 
high ultrasonic frequencies, the absorption coefficient increases with decrease in temper­
ature. 

THE absorption of ultrasound in superconductors 
was first investigated theoretically by Bardeen, 
Cooper, and Schrieffer. [1] In the case fiw « kT 
( w is the ultrasonic frequency, k is the Boltz­
mann's constant, T is the absolute temperature), 
and in the isotropic model the ratio of the absorp­
tion coefficient in the superconducting and normal 
states of the metal is simply related with the value 
of the energy gap 6 in the excitation spectrum: 

2[ej./kT 1-lrt. 

This dependence is obtained neglecting the decay 
of the phonons into a pair of quasi-particles, which 
make a contribution only of the order of fiw/kT 
relative to the fundamental effect (absorption of 
the phonon by an electron) and differs from zero 
in a narrow range of temperatures close to the 
transmission temperature. [2] 

Pokrovskil [3] has discovered that if T = 0 the 
ultrasonic absorption is determined only by the 
decay of the phonon into two quasi-particles, which 
is possible only for frequencies above the thresh­
old. The threshold frequency in the isotropic case 
is equal to Wth = 26/fi, where the absorption at 
the threshold point achieves its final value by a 
jump. In anisotropic superconductors at T = 0, 
the ultrasonic absorption close to threshold falls 
off to zero ( Ys ~ -../ w - wth), while the threshold 
frequency is a function of the direction of propa­
gation of the sound. [4] 

It will be shown below that the threshold phe­
nomena take place also at finite temperatures. In 
the isotropic model, the absorption coefficient 
changes discontinuously upon decrease in temper­
ature at a value of T determined by fiw = 26( T). 
In the anisotropic case, the Ys ( T) and Ys ( w) 

curves have vertical tangents on the right at the 
threshold point ( T > Tth and w > Wth). Experi­
mental investigation of the threshold absorption 
for T ;r. 0 can be used to establish the angular 
and temperature dependence of the energy gap. 

At high frequencies (fiw > 26( 0 )), decay of 
the phonon into two quasi-particles is possible at 
any temperature, and plays a fundamental role in 
the ultrasonic absorption. In this case, the absorp­
tion coefficient increases upon decrease in tem­
perature. In the limit fiw » 26 ( 0), the absorption 
coefficient does not depend on the temperature and 
is not changed in the superconducting transition 
(Yshn = 1). 

The derivative dys/dT, computed by the for­
mula of Bardeen, Cooper, and Schrieffer, [1] is 
infinite at the critical point. Other authors have 
come to the same conclusion. [2, 5] Account of the 
anisotropy [s, 7] does not change this result. The 
experimental investigation of ultrasonic absorp­
tion in superconductors [8] has apparently shown 
that dys /dT is finite at the critical point and that 
the absorption coefficient falls off in the immedi­
ate vicinity of the transition temperature more 
slowly than according to the Bardeen-Cooper­
Schriefer formula. Bezuglyi, Galkin, and Korol­
yuk [8] have associated this with the existence of 
an anisotropy in the critical temperature, but this 
explanation contradicts the assumption of the the­
ory of second-order phase transitions, and also 
the conclusions of the microscopic theory of aniso­
tropic superconductors. [SJ 

We shall show that the finite value of the deriv­
ative dys /dT is a consequence of the general 
theory of superconductivity and is obtained upon 
correct account of the small contributions from 
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the decay of the phonon into a pair of quasi­
particles. 

1. We proceed to the quantitative consideration 
of the problem. We write the Hamiltonian of the 
interaction of the electrons with the phonons in 
the Frohlich form: 

(1) 

apa• apa; bq. bq are the creation and annihilation 
operators of an electron with spin projection a and 
momentum p, and of a phonon with momentum q, 
V is the volume of the crystal and g is the cou­
piing constant. 

We introduce the creation and annihilation op­
erators of the excitations by the canonical trans­
formation of Bogolyubov: [10] 

ap+ = UpO'.po + Vpo:;1, a-p, _ = UpO'.p1 - Vp0'.;0; 

u~= 1/2 (I +~/e), v~= 1/2 (1-~/e) (2) 

( ~ is the energy of the electron in the normal 
state, calculated from the Fermi energy, and 
E = -../ t,2 + ~2 is the energy of interaction). 

To determine the probability of absorption of 
a sound quantum, we calculate the squares of the 
matrix elements for the transitions a+ ab ( ab­
sorption of a phonon by the electron) and a+ a +b 
(decay of the phonon into a pair of quasi -particles), 
and also for the reverse transitions. The ultra­
sonic absorption coefficient calculated by this 
method is given by 

_ :rtg2w (' {( , ££' _ ~~·) , , 
rS-(2:rt1i)"Jdp I, ss' (f-f)6(e -e-liw) 

1 ( ~/;' M') } + 2 1- :. (1 - f- f') 6 (e + e' -!iw) . (3) 

Here the unprimed quantities have the argument p 
while the primed quantities have the argument 
p + q; f = (eEikT + 1)-1• The delta-function in the 
integrand of the expression corresponds to the laws 
of conservation of energy E 1 - E = tiw (the transi­
tion a+ ab) and E 1 + E = tiw (for the transition 
a+ a+b ). 

We transform to the variables ~, e and cp 
( cp is an angle in the plane p • q = 0 ) : 

dp = m2q-1d~ d~' d<p; 

m is the mass of the "normal" electron. Inte­
grating over cp, we get 

(4) 

Y5 = a)~ d~ d~' {(I+!;£'~.~~,) (f- f') 6 (e'- e -!iw) 

+ + (I + ~e~:) {1 - f- f') 6 (e + e' - liw)} ; (5) 

(6) 

The region of integration in the plane ~ ~ 1 is 
limited by the curves 

~'= ~ + q2/2m ± p (£) q/m. (7) 

The line E + E1 - tiw = 0 for any value of t. is lo­
cated wholly in this region and is symmetric rela­
tive to the axes ~ and ~~. The line E 1 - E = tiw 
does not possess symmetry in the limits of the 
region of integration. Therefore, the odd terms, 
which are proportional to ~ ~ 1 , are omitted in the 
second component but remain in the first [com­
pare (3) and (5)]. 

Integrating with account of the a-functions, we 
get 

co 

4 {(' d s (liw + s)- ~2 f ( ) f (!i )J 
Ys= a ,\ e fs"- ~·f(n(t)+el'-~"[ e - w + e 

Ll. 

co 

1 (' d [I s (liw + s)- ~ 2 J 
+2 .\ e - fs2 -L\ 2 f(liw+s)'-L\ 2 

b 

nw/2 

X [f(e)-f(liw+e)l+ ('de s(liw-s)+L\' l V s'- L\ 2 V (liw -- s)" -- ~' 

X [I - f (e) - f (!iw -- e)l}. (8) 

Here 

(9) 

v0 is the velocity of the electron on the Fermi sur­
face. The expression for b is written in the ap­
proximation t./qv0 « 1. In the opposing case, the 
explicit form of b is not needed. The decay of the 
phonon into two quasi-particles corresponds to the 
third component on the right hand side of Eq. (8). 

For t. = 0 we get the following expression for 
the absorption coefficient in the normal state: 

Yn= 2anw. (10) 

2. We first show that the derivative dys /dT 
is finite for T = Tc. Considering the temperature 
dependence of the energy gap to be 

~=cVTc-T (11) 

( T c is the critical temperature, and the constant 
c is equal to 3.2 k~ in the isotropic model), it 
is not difficult to see that 

(12) 

In the calculation of the derivative dys ( T c )/dT, 
it is convenient to reduce Eq. (8) for the absorp­
tion coefficient to the form 

Ys = F (~) + <p (~) + tp (~); (13) 
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00 

F(i'1)=4a{1 de s(hw+s) 
.l V s2 - ~2 V (hw + s)'- ~2 
t. 

/jw/2 

X{f(e)-f(ruJJ+e)J+ \de e(nw-e) 
V s2 - ~2 V (nw- s)2 - ~· 

x[l-f(e) -f(liw -e)l}, (14) 

fliw\!2 1 - f(e)-f (nw- s) de 
m(f1) o= 4ai'.2 1 . 
"' ~ fs2 -n"V(Iiw-s)2 -~2 

t. 

00 \ (' f (e)- f (nw + s) ~ - \ -----::rc~~r======.=:=;=.:- de! , 6 V sz- ~2 V (hw + sJ"- ~" 
(15) 

and <fJ ( t:..) coincides with the second integral on the 
right hand side of Eq. (8). The limit of d<f;/dt:..2 is 
known to be finite as t:..- 0; therefore, we shall 
not consider the function </J( t:..) at present. 

It is not possible to differentiate the integrals 
(14) and (15) with respect to the lower limit t:.., 
since the integrand functions have singularities 
at E = t:... These singularities vanish after inte­
gration by parts. By integrating, we get from 
Eq. (14) 

tiimi~~ = lim{r -v 2ds . [f' (e)- f' (nw + e)l 
a t.-+o t.-+0 6 s - ~z 

hw/2 
(' de 
.\ V 84 _ ~· [f' (e) - f' (nw -e)] 
t. 

00 

_ (' e~[ f(s)-f(nw+s) J de 
.l as (ftw + e)2 

Tiw/2 \ 
\' ~[1-f(s)-f(hw-s)]d \. 
.l e ae (ftw- e)2 ej 
0 

(16) 

Here the prime, in contrast with the expressions 
(3)- (7), denotes differentiation with respect to the 
argument. 

Each of the first two terms is logarithmically 
divergent as t:..- 0. We note that these terms 
correspond to different processes (a +a+b and 
a+ ab) and enter into (14) with different signs. 
The difference of the diverging integrals as 
t:.. - 0 is equal to 

de ---:c='==== [f' (nw - e) - f' (liw + e)] y 82 _ ~2 

00 

+ I · de [f' (e) -- f' (nw+e) 
.l V s2 - 112 

nwf2 

and does not have a singularity as t:..- 0. 
The derivatives of the individual components 

in cp ( t:..), which correspond to different proc-

esses of phonon absorption, also diverge loga­
rithmically as t:..- 0. However, the sum of 
these derivatives has a finite limit as t:.. - 0. 
One can establish this fact by carrying out the 
calculation in the same way as in the computation 
of BF/Bt:..2• Similar calculations, with unimpor­
tant complications, can also be carried out in 
the anisotropic case. 

Thus we have shown that the derivative dys /dT 
is finite for T = Tc. This conclusion is found in 
qualitative agreement with the results of Bezuglyi, 
Galkin, and Korolyuk. [8] 

Omitting the straightforward but rather cum­
bersome calculations, we write down the results 
of the calculation of dys /dT for T = Tc, which 
have been carried out for three limiting cases 
( s is the sound velocity): 

a) 

b) 

c) 

hw s 
liT~v' c 0 

dy s (T cl _ 2 2 ( s ) 3 1 . 
---;rr- - 3 ac v;;- kT c , 

slv0~nw/kTc~l, 

(17) 

dy, (Tc)ldT = ~ac2 (nw)2 I (kTc)-3 (In 4- 1); (18) 

dys(Tc) =-8ac"!nk~w. 
dT nw c 

(19) 

The coefficient of absorption in the normal 
metal does not depend on the temperature. Thus 
the derivative dy/dT experiences a jump in the 
transition from the normal state to the supercon­
ducting state. Under experimental conditions [8] 

( w "" 108 sec-1, which corresponds to the case a) 
the jump dy/dT is very small: 

T d"s -= -'-- - JQ-4. 
Yn dT 

In the case of high frequencies ( 1iw » kT c), 
the quantity dys /dT is negative [see (17)]. Con­
sequently, close to Tc, the absorption coefficient 
increases with decrease in temperature. 

3. We proceed to investigate the temperature 
dependence of the absorption coefficient. We first 
consider the case of comparatively low ultrasonic 
frequencies nw « kT (and not very low tempera­
tures ) . With an aim toward allowance for the 
threshold effect, we carry out the computations 
with accuracy up to terms of second order of 
nw/kT. In the general expression (8), we study 
separately the components corresponding to the 
absorption of the phonon by the electron and the 
decay of the phonon into a pair of quasi-particles. 
We denote these components by y1 and y 2, re­
spectively. In the integrand for y1 [see Eq. (8)], 
the quantity 
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e(liw + s)-~2 

V e"- ~2 Y (nw + e)2 - ~· 

can be replaced in the main region of integration 
E - .6. ~ kT by unity with accuracy up to terms of 
order (tiw/kT )2• Then the expression for y 1 takes 
the simple form: 

00 

Y1 "4a ~ [f (e) - f (fiw + e)l de. (20) 

"" 
Limiting ourselves to quantities of order 
f( .6. )tiw/kT, we have 

Y1!Yn= 2f(/1) + nw f'(/1). (21} 

The threshold absorption exists only at temper­
atures satisfying the condition tiw ::::: 2.6.. From the 
assumption tiw « kT, the value of 1 - f( E) 
- f(tiw- E) is approximately equal to tiw/4kTc. 

The function 
e(ftw-e)-i-~2 

V e2- ~2 f(hw- s)"- ~· 

in the integrand of the expression for y2 cannot 
be replaced by unity since the interval of integra­
tion is small in comparison with kT. Such a sub­
stitution was made by Gellikman and Kresin. [2] 

As a result, the jump in the absorption coefficient 
at tiw = 2.6. was eliminated. 

The expression for y 2 I Yn has the form 

s(/iw-s)+~" de. 
Y s2- ~· Y (nul- e)2- ~· 

(22) 

It is easy to compute this value for T = Tc: 

Y2 (T,J I Yn o= nw I 4kTc. (23) 

With allowance for (21), it can be seen that for 
T = Tc we obtained the exact value of the absorp­
tion coefficient Ys = Yn· We note that in the paper 
of Tsuneto [5] the negative term tiwf' ( .6.) was 
omitted in the expression for y 1• Therefore, an 
incorrect conclusion was drawn by the author, 
namely, that there is a maximum in the absorp­
tion coefficient immediately below Tc, which in 
fact does not exist. 

By computing the limit (22) as .6. - tiw/2, we 
find the value for the jump in the absorption co­
efficient, oy, 

(24) 

For an arbitrary temperature, one can express 
the right hand side of (22) in terms of the com­
plete integrals E(z) and K(z), and the expres­
sion for Ys = y 1 + y 2 takes the form 

~ = 2f( 11) + nwf'( 11) + 2~~ J1£ ~zi- 1 --;- 2 K (Z)]; 

Z = (nw - 211) 1 (nw + 211). (25} 

It can be shown that the Ys ( T) curve is convex 
for tiw > 2.6. and concave in the opposite case. The 
inequality tiw > 2.6. determines the region of tem­
peratures near T c in which the dependence Ys ( T) 
differs significantly from that obtained by Bardeen, 
Cooper, and Schrieffer. This difference was dis­
covered by Bezuglyi, Galkin, and Korolyuk, [8] 

which led them to an incorrect conclusion as to 
the existence of anisotropy in the critical tern­
perature. However, the region of temperatures in 
which deviations were observed from the formula 
of Bardeen, Cooper, and Schrieffer, is, according 
to the data of the experiment, [8] significantly 
greater than theory predicts. Obviously, this is 
explained by the presence of collisions of elec­
trons with impurities, which we have not taken 
into account. For w < 1/ T, where T is the time 
between collisions, our considerations are inap­
plicable. 

The dependence y s ( T) changes upon reduction 
of the temperature. Under the condition kT « ti w, 
one can set b = oo in Eq. (8), while the quantity 
f(tiw +E) can be neglected in the integrand in 
comparison with f( E). In the absence of thresh­
old absorption ( tiw < 2.6.( T)), the absorption co­
efficient is equal to 

00 

= 4a \ e (1iw + s)- ~· e-</kT de 
r. ~ y s2 - ~· y (/iw + s)2 - ~· • 

~ 

Asymptotically, we have as T- 0: 

(26) 

Ys I y n = e-~(kT [2nMT I nw (fiw + 211)]'1• (fiw '>kT). 
(27) 

We note that in the derivation of this formula, we 
have not assumed the smallness of tiw in compar­
ison with kTc. Thus, close to T = 0, the absorp­
tion coefficient falls off with decrease in tempera­
ture more rapidly than according to the Bardeen­
Cooper-Schrieffer formula, [iJ which was derived 
under the condition tiw « kT. 

Let us consider the case tiw » kTc, when the 
ultrasonic absorption takes place primarily via the 
process a+a+b. In the components corresponding to 
this process, one can replace the integrand function by 
unity. As a result, it turns out that y s = Yn for all 
temperatures.1> This agrees with Eq. (19) for the 

derivative dys( Tc )/dT, since this derivative de­
creases in absolute value to zero with increase 
in frequency. 

For arbitrary relations between tiw and kT, 
one can obtain exactly only the value of the ab­
sorption coefficient jump at tiw = 2.6.: 

1lUpon increase in w, the difference Ys - Yn decreases, 
although each of the quantities Ys and Yn increases. 
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(28) 

The Fermi function f(nw/2) in this formula must 
be computed at the threshold temperature Tth· 

The lower the temperature at which the jump 
takes place, the larger is its value. For suffi­
ciently high frequencies, oy exceeds Yn· This 
means that up to Tth the absorption coefficient 
increases upon decrease in temperature. When 
nw » kTth. the absorption coefficient is exponen­
tially small at T < Tth [see (27)]. 

The increase in Ys upon decrease in tempera­
ture close to Tc, and the subsequent rapid fall off 
of Ys, were discovered experimentally by Born­
mel, [1l] who used hypersound of frequency w/27f 
= 3 x 1010 sec-1• Unfortunately, a detailed sum­
mary of the results of Bommel has not yet been 
published. A brief exposition of these results is 
contained in the reviews [12 • 13 ] • 

We shall write down the dependence of Ys = Yz 
on w for T = 0, which generalizes the results of 
the research of PokrovskiL [3] Just as in (25), 
Ys is computed in terms of the complete elliptic 
integrals: 

rs = rn {2£ (Z)/(1 + Z)- (I - Z) K (Z)}. (29) 

4. In conclusion, we shall discuss the problem 
of the effect of anisotropy on the properties of the 
threshold ultrasonic absorption. For T = 0, this 
problem was considered by Pokrovskii and Ryv­
kin. [4] The conclusions of this research are eas­
ily generalized to the case of finite temperatures. 
In an anisotropic superconductor, the general for­
mula for the absorption coefficient has the same 
form as in the isotropic case [see (3)], with only 
this difference that the interaction constant g de­
pends on the angles and appears as a factor in the 
expression under the integral. The threshold fre­
quency and temperature are determined from the 
condition nw = Zmin• where z = E + E', and Zmin 
is the minimum of this quantity. Repeating the 
discussions given in [4], it is easy to see that 
Zmin ~ 2t.~in• where t.~in is the minimum 
value of the energy gap along the line q · v = 0 on 
the Fermi surface, v equals the velocity of the 
''normal'' electron. The threshold values of the 
frequency and temperature thus depend on the di­
rection of propagation of the sound. 

We now determine the character of the temper­
ature and frequency dependence of y2 close to 
threshold. For this purpose, we transform in the 
second component in (3) to integration with respect 
to z and over the level surfaces of the function 
z( P): 

dp = 1 az;ap 1 -l dz dSz. (30) 

After integration with respect to z we get 

- ~ _ _cl§__ 2 1- - ' 1- '" -, . r ~· !'. !'.') ) 
rz- 2(2Jth)" ~ IOZ/Opl g ( f tl( 88 (31) 

Integration in (31) is carried out over the surface 
z = nw. 

In the approach to the threshold, the surface 
z = nw contracts to a point, and near threshold it 
is represented by the ellipsoid 

nw ~ Zlllilt + ~ik (fh - fioi) (pk --Po,,); 

P · is the coordinate of the point z = zmin and 01 

t3ik is a function of q. The value of I oz/ op I van-
ishes for z = Zmin linearly with respect to Pi 
- Poi• while the area of the surface z = nw is 
proportional to the square of the dimensions of 
the ellipsoid. The length of the semi-axis of the 
ellipsoid is proportional to ,; nw- Zmin . There­
fore, close to threshold, 

(32) 

This result for T = 0 was obtained by Pokrovskil 
and Ryvkin. [4] 

When nw = zmin• the curves Ys ( T) and Ys ( w) 
have vertical tangents to the right (nw > Zmin) 
and oblique lines to the left. The curve Ys ( T) is 
convex for T > Tth and concave for T < Tth· This 
in principle permits us to determine the values of 
Wth and Tth by experiment. Knowing these quan­
tities, we can find the dependence of t.kin on the 
direction of the sonic wave vector, and from it de­
termine the anisotropy of the energy gap every­
where with the exception of special "blank spots." 
[14] Consequently, detailed experimental investi­
gation of ultrasonic absorption in superconductors 
can serve as a method of establishing the angular 
and temperature dependence of the energy gap. 

I express my gratitude to M. I. Kaganov and 
I. M. Lifshitz for useful discussions, and to V. L. 
Pokrovskii and L. P. Gor'kov for interesting in ob­
servations. 
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