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The role of three-particle short-range forces is considered in reactions with the formation 
of three particles near the threshold of the reaction on the condition that the pair forces are 
also short-range. It is shown that when all pair amplitudes of zero-energy are aik""' r 0, 

where r 0 is the radius of action of the forces, or when one of the amplitudes, for instance 
I a 23 l 2: r 0, whereas a 12 ""' r 0 and a 13 ""' r 0, the three-particle forces can, under certain con­
ditions, appreciably alter the energy dependence of the amplitude of the reaction. 

INTRODUCTION 

THE three body problem with short-range forces 
has been considered up to now under the assump­
tion that the principal role is played by pair inter­
actions between particles [1- 3]. The contribution 
due to particle interaction in the region where the 
distances between all the particles are on the or­
der of the effective range of the forces was usually 
neglected, owing to the small dimensions of this 
region. It will be shown in the present paper, how­
ever, that three-particle forces can lead to the 
presence of a pole in the scattering amplitude, re­
garded as an analytic function of the system energy 
E, near E = 0. In this case the three-particle 
forces play an essential role and can change appre­
ciably the energy dependence of the scattering am­
plitude. The pole of the amplitude can lie either on 
the physical sheet at E < 0 or on the non-physical 
sheet. In the former case it corresponds obviously 
to the bound three-particle state. We consider two 
cases in this paper. 

In the first section we determine the energy de­
pendence of the reaction A+ B ..... A' + B' + C under 
the condition that the pair amplitudes at zero energy 
are aik ""' r 0, where r 0 is the effective range of the 
forces. It is shown that three-particle forces with 
range R0 ;;;, r 0 play an important role if a( 0) » rt, 
where a( 0) is the amplitude of the transformation 
of three particles into three at zero energy [the 
normalization of a( 0) will be defined below]. 

Three-particle forces lead to a narrow reso­
nance of width on the order of ~E""' R~2/Ma( 0 ), 
where M is the sum of the particle mass, in the 
amplitude of the reaction that occurs with produc­
tion of three particles. In the resonance region, 

the pair interactions can be neglected. The scat­
tering amplitude of the three particles can be ex­
pressed in this region in terms of three arbitrary 
parameters: the three-particle amplitude a( 0) 
and the two radii r 1 and r 2, of which one is con­
tained in the answer logarithmically. Three­
particle forces can also lead to the existence of 
a bound state of the three particles. 

In the second section we consider the case when 
one of the pair amplitudes, say a 23 is much larger 
than r 0, with a 12 ""' r 0 and a 13 ""' r 0• Three-particle 
forces with range R0 ;;;. r 0 are significant if a( 0) 

» rija~3 • The width of the resonance is of order 
~E ""' a~3ti2 /Ma ( 0). If we neglect the nonresonant 
pair interactions of particle 1 with particles 2 
and 3, then the three-particle scattering amplitude 
can be expressed in terms of three parameters, 
namely a( 0 ), a 23, and a certain length p2 ""' a~ 3 x 
ln-1 (a23 /r0 ) 2• In the present work we determine 
the energy dependence in the reaction A+ B ..... A' 
+ B' + C and upon scattering of particle 1 by the 
bound state of particles 2 and 3. 

We plan to consider in a future paper the role 
of three-particle forces under the condition that 
all paired amplitudes aik » r 0• 

1. ROLE OF THREE PARTICLE FORCES WHEN 
aik""' ro 

We consider a reaction with production of three 
particles, for example the reaction of the type 

A+ B __,A'+ B' + C (1) 

near threshold. The spins of the particles will for 
simplicity be assumed equal to zero. Reactions of 
this type were considered in several papers [1, 2] 
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under the assumption that the three-particle inter­
actions can be neglected. In the present section 
we consider the case when the three-particle 
forces play an appreciable role, so that a( 0) » r~, 
in spite of the fact that aik ~ r 0• We shall assume 
that the range of the three-particle interaction is 
Ro ~ ro. 

If the particles A', B', and C are produced in 
a small volume ~ r5, then the dependence of the 
amplitude of reaction (1) on the energy and on the 
other quantum numbers of the final state is deter­
mined, generally speaking, by the wave function of 
the particles A', B', and C in a region where the 
distances between the particles are ~ r 0 [i J. In 
this region the wave functions for different ener­
gies are proportional to one another. In the ab­
sence of three particle forces the proportionality 
of the wave functions was proved by GribovC1J. In 
the case of interest to us this statement will be 
proved below. Therefore the amplitude of reac­
tion (1) (A'B'C I AB )E near threshold can be 
written in the form 

(A'B'CJAB)E =A (£) <A'B'CJAB) 0 , (2) 

where (A'B'C I AB )o is the amplitude at threshold 
energy. 

The quantity A( E) depends on the energy and 
the other quantum numbers of the final state and 
is the complex conjugate of the factor of propor­
tionality between wave functions whose asymptotic 
form is a plane incident wave plus a convergent 
one, and which are determined for a complex­
conjugate potential (if the interaction potential 
between the particles A', B', and C is complex, 
that is, in the case of decay particles ) . 

Starting from the equations written down below 
for the wave function of the particles A', B', and 
C, it is easy to verify that in all the cases of in­
terest to us the quantity A( E) simply coincides 
with the coefficient of the proportionality of the 
wave functions with asymptotic form consisting 
of a plane incident plus diverging wave. 

In determining the wave function of the par­
ticles A', B', and C we neglect the contribution 
from the pair interactions. (The conditions under 
which this approximation is valid will be obtained 
below.) Then the energy dependence of the ampli­
tude of reaction (1), and consequently also of the 
quantity A( E), can be readily obtained by sum­
ming the diagrams shown in the figure. 

For what follows, however, it is more conven­
ient to obtain A( E) directly from the Schrodinger 

+ 

equation. In the c.m.s. of particles A', B', and C 

the wave function is a function of r 23 and p 1, where 

r2a = r2 - ra, P1 = r1- (m2r2 + mara) I (m2 + mal. 

with rj and mj the coordinate and mass of the j-th 
particle. For brevity we write the wave function 
in the form 'lt£ ( R), where R is the radius vector 
in six dimensional space constructed on the vectors 
V 1-t23/M r 23 and V 1-t1 /M p 1, where 

M = m1 + m2 + m3• 

The wave function 'ltE ( R) satisfies the equa­
tion [1J (n = 1) 

'¥ E (R) = eikR + ~GE ( IR- R'J) V (R') '¥ E(R') d6R'. (3) 

Here k is a six-vector (V M/t-t23 k23, v Mlt-tt k1, 
where k23 is the wave vector of particles 2 and 3 
in their center-of-mass system, and k1 is the 
wave vector of particle 1 relative to the center 
of mass of particles 2 and 3.) The quantities k~ 3 
and k~ are related by the equation k~ 3 /2t-t23 + k~ /2~-tt 
=E. The function V(R) in formula (3) is the par­
ticle interaction potential, while GE ( R) is the 
Green's function 

. M2E H~1> CJ/2ME R) a E (R) = - t ·3n2 r R" , (4) 

where H~0 ( z ) is the Hankel function of the first 
kind and y = ( m 1m 2m 3 /M3 )312. 

We write the transition amplitude ( kb, ki I k23, k1) 
in the following fashion: 

<k~a. k~lk23 , k1 ) = iM-1a (k~a. k~, k2a, k1) o (£ - E'). 

The number of transitions dN per unit time in a 
unit volume, under the condition that the initial 
particle densities are equal to unity, is determined 
by the formula 

I a (k' k' k k ) 12 d3k' d3k' 
dN = (2:rt)-1 2a• 1' za· 1 0 (£ _ £') __ 2a_ __1 • 

M 2 (2:rt)3 (2:rt)3 

(5) 

From an examination of the diagrams describing 
the scattering of the three particles, it follows that 
the amplitude a(k23, ki, k23, k1) is expressed in 
terms of 'lt£(R) by means of the formula 

a (k~a. k~, k2a· k1) =- ~eik'RV (R) 'I'E (R) d6R. (6) 

We shall not prove formula (6) here, since the ex­
act normalization of the quantity a ( k23, ki, k23, k1 ) 

is not very important to us. 
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We solve Eq. (3) under the assumption that the 
pair interaction can be neglected. Then the poten­
tial V(R) differs from zero only when R;:;;. R0 - r 0• 

Therefore when kijro « 1 the free term in (3) can 
be replaced by unity, and the Green's function (4) 
can be expanded in its argument up to terms that 
tend to zero as kijro - 0. The equation obtained 
in this manner can be solved by the method devel­
oped in detail in [ 4J. We do not present the corre­
sponding derivations here, since they are com­
pletely analogous to those given earlier [ 4J, except 
that now the solution must be sought in the form of 
a series in the eigenfunctions of the equation 

<p,. ( R) =An~ Go (I R- R' I) V( R') <Jla ( R') d6R'. (7) 

Just as before [ 4J, it turns out that the inequality 
a( 0) » d can be satisfied only if one of the values 
An= A is close to unity: I A -11 - rt/a( 0). Then, 
accurate to terms - kijr~ the wave functions for dif­
ferent energies in the region R ;S R0 are propor­
tional to one another: 

'¥ E ( R) = A (E) '¥ 0 ( R); 

A (E)= [1 -a (0) ~ (E)J-1, 

(8) 

(9) 

,. (E)=_ MEr [- sn~ + !viE (I VZME r2 _ 'ni) J (10) 
" 8n2 rz 2n n 2 2 • 

1 

Here r 1 and r 2 > 0 are real parameters - r 0• 

The amplitude a( kb, k1, k23, k1 ) can be deter­
mined from formula (6), in which we substitute 
expression (8) and replace the exponential under 
the integral sign by unity. Then a( kb, k1, k23, k1) 

turns out to depend only on E: a ( kb, k1, k23 , k1 ) 

= a( E), and its value is 

a (E) =A (E) a (0). (11) 

From the results [5] concerning the connection be­
tween the number of zeros and poles of the ampli­
tude it follows that on the physical sheet 0 :::; arg E 
:s 21r the amplitude has three poles if a( 0) < 0 and 
two poles when a( 0) > 0. 

The position of the pole at the energy E = E 0, 

satisfying the condition ME 0Rij « 1, can be readily 
determined from formulas (9) and (10), if it is 
noted that under this condition the first term in 
formula (10) is much larger than all the remaining 
terms. Neglecting these terms, we obtain an equa­
tion for E0: 

1 - ME0yrJ.2 a (0) = 0, 

from which it follows that 

E0 = ri!Mra (0). 

(12) 

(13) 

If a( 0) < 0, then also E 0 < 0. In this case there 
exists a bound state of the three particles, with 

energy E 0• The remaining two poles for a( 0) < 0 
obviously lie outside the region where the theory 
is valid. It follows from (11), (10), and (9) that in 
the case when a( 0) < 0 the amplitude a( E) ::::; a( 0) 
if E::;.. -d/Mya(O) and a(E)::::; d/MyE « a(O) 
when E » - r~ /My a ( 0) 1• Thus, in the case when 
a( 0) < 0 the three-particle forces lead to a nar­
row resonance in the amplitude, the width of 
which is 

D.E ---- I ri/ Mra (0) 1. (14) 

whereas in the region of resonance a ( E ) ::::; a ( 0 ) . 
The three particle forces lead also to the existence 
of the bound state of the three particles, with energy 
E 0, given by formula (13). When a(O) > 0, it fol­
lows from (13) that E 0 > 0. However, in the region 
E > 0 there can be no strictly real poles in a( E) 
and consequently E 0 should have a small imagi­
nary part. The magnitude of this imaginary part 
can be determined b,y substituting in (9) for Eo the 
quantity E 0 = I E 0 I E1<P, where I E 0 I is determined 
by formula (13), and the argument cp is a small 
quantity. It is found then that 

<p = - rtfra (0). (15) 

Since cp < 0, the pole E 0 for a( 0) > 0 lies on the 
nonphysical sheet, because 0 ::s cp :s 2rr on the 
physical sheet. On the physical sheet, in the case 
a( 0) > 0, the amplitude a( E) has no poles in the 
region where the theory is valid. 

When E = I E 0 I in the case when a( 0) > 0 the 
amplitude a( E), as follows from (11), (10), (9), 
and (13), has an order of magnitude 

a (IE0 1) --a (0) (a (0) I rt) ';;J>a (0), (16) 

and the width of the interval b.E, in which relation 
(16) holds true is given by the formula 

(17) 

Thus, when a( 0) > 0 there is no three-particle 
bound state, and the amplitude a( E) depends on 
the energy as follows: 

in the region where 

11 - MrEa (O)Iri 1 ~ 1, I a (E) I ~a (0); 

in the region where 

11- Mra (0)/ri I ----1, a (E) --a (O); 

finally, when 

MrEa (0)/ri ~ 1, a (E) ---- ri (MrEt1 ~a (0). 

Let us ascertain now at what energies we can 
neglect the contribution of the pair interactions in 
the amplitude a( E). The pair interactions lead to 
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terms ~ kijaij ~ .J ME r 0 in the scattering ampli­
tude, whereas the triple forces produce a contri­
bution ~a( 0 )MEr02 in the resonance region. The 
pair forces can obviously be neglected if .J ME r 0 

« MEa( 0 )r02 ;:;, 1, from which it follows that 

r~ a-2 (0) M-1 ~ E ;(; r~ a-1 (0) M-1. (18) 

If a( 0) < 0, then for E > 0 the inclusion of 
terms ~ E2 in A (E) is obviously in excess of 
the accuracy, since the contribution from these 
terms is much smaller in this region than the 
contribution from the pair interactions. There­
fore when a( 0) < 0 the formula for A( E) in re­
gion (18) should be written in the form 

A (E) = (1 - ya (0) ME!ri)-1 • (19) 

When a ( 0) > 0 it is meaningful to include the term 
~ E2 in formula (10) only in the region where the 
inequality I a( E) I »a( 0) holds true. If a( E) 
~ a( 0 ), it is necessary to use formula (19) for 
A(E ). 

The energy dependence of reaction (1) in the 
region of the triple-force resonance is determined 
by formula (2), in which A( E) is determined in 
turn by formulas (9) and (10) or by formula (19). 

The method developed is applicable also when 
A', B', and C are decay particles. Therefore all 
the results of this section are valid also for decay 
particles, but the quantities a(O), r 1, and r 2 are 
in this case, generally speaking, complex. 

2. THREE PARTICLE FORCES UNDER THE CON­
DITION THAT a 23 » r 0, a 12 ~ r 0, AND a 13 ~ r 0 

Let us assume that a23 » r 0, with a12 ~ r 0, and 
a 13 ~ r 0, and let us determine the wave function of 
the particles A', B', and C, neglecting the non­
resonant interaction between particle 1 and par­
ticles 2 and 3, under the condition that a resonant 
three-particle interaction with range R0 ~ r 0 ex­
ists between the particles. For simplicity we 
shall assume first that A', B', and C are not de­
cay particles, although the results of this section, 
as will be explained below, are valid also for de­
cay particles. 

The c.m.s. wave function of the particles satis­
fies the equation 

Here GE(R, R') is the Green's function of the 
Schrodinger equation for three particles with po­
tential v23( r23 ), which is the potential of the in-

teraction between particles 2 and 3, while 
<Pk23 ( r 23 ) is the wave function of particles 2 and 
3 with relative-motion energy E 23 = k~3 /2J..~,23 , sat­
isfying the equation 

(- 1123/2f.t23 + v23 (r23) - £23) <pk, (r23) = 0. (21) 

For large r 23 the function <Pk23 ( r 23 ) has an asym­
ptotic form 

m (r ) _ eik23r,. + a (k ) r-1eik23r,. 't'k,. 23 - 23 23 23 ' 

with scattering amplitude a 23 (k23 .) = a23(1- ik23a 23 )-1. 
If a23 < 0, then particles 2 and 3 can form a 

bound state. In this case the scattering of particle 
1 by the bound state of particles 2 and 3 can be 
solved by choosing as the function o/k23( r 23 ) the 
particle bound state function <Pd ( r 23 ). 

The wave function describing the SCStttering of 
particle 1 by the bound state of the two others will 
be denoted by \fiE ( k1; R). From now on, for brev­
ity, we shall denote the functions \fiE ( k23, k1; R) 
and \ftE(k1; R) by \ftE(R) whenever no misunder­
standing will result. 

The Green's function in (20) is 

GE ( R, R') =- (2~)6 
cp , (r23) cp •, (r~3) exp {ik~ (p, - p~)} 

~ k23 k23 

where the term G ~) ( R, R' ) appears only in the 
presence of a bound state of particles 2 and 3: 

(22) 

(23) 

where - a2/2J..~,23 is the energy of the bound state 
-1 

a= a23· 
Equation (20) can be solved by the method de­

tailed in [ 4]. It turns out here that the wave func­
tions at different energies and at different values 
of k23 and k1 are proportional to one another in 
the range of the forces. We assume this fact here 
without proof, since it is quite natural, and deter­
mine the proportionality factor directly from the 
condition of orthogonality of the wave functions: 

~ lf~ (0, 0; R) 1f E ( R) d6R. = 0 (£ =/= O)e (24) 

The zero -energy function \ft 0 ( 0, 0; R) is obviously 
complex if particles 2 and 3 can form a bound state. 

To determine the coefficient of proportionality 
between the functions \fiE ( R) and \ft0( 0, 0; R) in 
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the range of action of the forces, we substitute the 
formula (20) in (24) in place of the functions WE ( R) 
and w0(0, 0; R) and carry out integration with re­
spect to R, using for the Green's function GE( R, R') 
and G0( R, R') the formulas (22) and (23). We then 
obtain in place of (24) the equality 

~cpo (rd V (R) '¥£ (R) d6R 

- ~ cpk,. (rd eik,~,v (R) '¥~ (0, 0; R) d6R 

+ ~ '¥~ (0, 0; R') V(R') [G~ (R', R") 

- GE (R', R")l v (R") '¥E(R")d6R'd6R". (25) 

The function wE ( R) enters into (25) only in the 
range of the triple forces. As noted above, it can 
be shown that it has then the form 

'¥ E(R) =A (k~a. E) '¥0 (0, 0; R). (26) 

Substituting (26) into (25) and replacing the expo­
nential under the integral sign in the second term 
in (25) by unity, we obtain an equation for A(k~3 , E), 
from which it follows that 

A (k~3 , E) = N (k~3) C (E), (27) 

where N ( k~3 ) is the coefficient of proportionality 
between the functions qJk23 (r23 ) and cp 0(r23 ) when 
r23 ~ ro: 

cpk,. (r2al = N (k~a) cpo (r2a), 

while the value of C( E) is 

(28) 

C (E) = a• (0)/a (0) (1 -a (0) f (E)), (29) 

a(O) =-M~cp0 (rdV(R)'¥0 (0,0; R) d6R, (30) 

f (E) = a•~o) ~ '¥~ (0, 0; R ') V (R') [G~(R', R") 

(31) 

We have 

(32) 

if 'Pk23( r23) is a function of the continuous spec­
trum, and 

(33) 

for a bound-state function. 
If we write the particle scattering amplitude in 

the form (4), then, in analogy with (6), the ampli­
tude a( k2J, kJ., k23, k1 ) is expressed in the case of 
interest to us in terms of the wave function 

a (k2a. k~, k23, k1) 

When E = 0 and k23 = k23 = 0, the amplitude 
a( kb, kJ., k23, ktl is obviously equal to a( 0 ). 

To determine C( E) it is necessary to calculate 
the integral (31). For this purpose it is first nec­
essary to integrate with respect to d3ki in expres­
sions (22) and (23) for the Green's function. In the 
resultant expression it is possible to separate in 
the integral with respect to d3k2J the term that 
does not depend on the energy, in which large kb 
~ ro- 1 are significant in the integration. This part 
of the integral is a certain constant which does not 
depend on the energy. The integral of the remain­
ing part converges when kiJ ~ a2l, and can there­
fore be calculated by using formula (28) for 
'Pk23 (r23 ) and expanding the integrand in powers 
of I p1 - pJ.l, discarding the terms that tend to zero 
when I p1 - Pi I - 0, after which the integration 
with respect to d3k2J can be carried out in explicit 
form. A detailed calculation of the integral (31) is 
given in the Appendix. We give here only the re­
sults. 

Let us consider first the case when a 23 > 0, that 
is, particles 2 and 3 cannot form a bound state. 
Then the amplitude a( 0) is real. The function 
A(k~3, E), as shown in the Appendix, is equal to 

where p2 > 0 is an arbitrary parameter. p-2 can 
be written in the form ( r 1 ~ r 0 ) 

(37) 

To determine the energy dependence of the re­
action (1) it is necessary to substitute in formula 
(2) in place of A( E) the quantity A(k~3, E), in 
accordance with formulas (35) and (36). It follows 
from formulas (35) and (36) that the energy depend­
ence of reaction (1) has a rather complicated char­
acter if a(O)f1(E) ~ 1. Since f(E) ~ MEa2/. in 
accordance with (36), the conditions a ( 0) f1 ( E ) ~ 1 
and MEd « 1 are compatible only if a( 0) » r~a~3. 
In the opposite case the three-particle forces lead 
only to an insignificant change in the energy de­
pendence of the amplitude. If I2J.L23Ea~3 1 « 1, then, 
as can be readily verified by direct calculation, 
formula (35) goes over into formula (9), which was 
derived in the preceding section. 
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Intheregion 0< E ~a~3rija- 2 (0)M- 1 one cannot 
neglect the nonresonant pair forces, and allowance 
for the energy dependence in the second term of 
A(k~3 , E) is in excess of the accuracy. 

Let us assume now that a 23 < 0, so that a bound 
state of particles 2 and 3 is possible. In this case 
the amplitude a( 0) is complex. Therefore in place 
of the proportionality factor with respect to the 
wave function >¥0(0, 0; R) it is more convenient to 
introduce a proportionality factor A ( k~3, E ) with 
respect to the wave function >¥(0; R) at energy 
E = - a 2/2J,.t23 , and to introduce in place of the pa­
rameter a ( 0) the real amplitude ad ( 0) of the 
scattering of particle 1 by the bound state of par­
ticles 2 and 3 at a system energy E = - a 2/2J,.t23• 

The elastic scattering amplitude ad ( k1, k1 ) and 
inelastic scattering amplitude ad ( k1, kh, k1 ) are 
determined by formulas similar to (34), and do not 
depend on the scattering angle, so that 

ad (k~, k1) - ad (k1), ad (k~, k~a. k1) = ad (k~a. k1); 

ad (k1) =- =~1 ~ IJld (r23) V (R) 1f E (k1 ; R) d6R, (38) 

ad (k~a. k1) = -:1 I ljJ , (r23) V (R) 'I' E (k1 ; R) d6R. (39) 
.) k23 

From (38), (39), (36), and (33) it follows that 

ad (k~a. k1) = - ( 2~ )';, ~, ad (k1). 
C1. 1- tk23a2a 

(40) 

The coefficient of proportionality between the wave 
functions, as shown in the Appendix, is 

A (k~3 , £) = - (2rrh3)'1' N (k~3) C (£); (41) 

C (£) = [1 -ad (0) (l] (£) -l] (- a2/2f1 23)) 

- iad (0) Y2f1 1 (a2/2f123 + £)'1•]-1 , 

11 (£) = (4rt2M/a3f1 1) { 1 (£). 

(42) 

(43) 

To determine the energy distribution of reac­
tion (1) it is necessary to substitute in formula (2) 
in place of the function A ( E ) the function A ( k~3, E ) , 
in accordance with formulas (41) and (42). The fac­
tor N( k~3 ) is determined by formula (32) if three 
particles are produced during the reaction, and by 
formula (33) if a bound state of particles 2 and 3 is 
produced. 

From (39) and (41) it follows that the amplitude 
for the elastic scattering of particle 1 on the bound 
state of the two others has the form 

(44) 

The inelastic scattering amplitude is determined 
by (40). In scattering on the bound state of par­
ticles 2 and 3, or upon formation of a bound state 

in reaction (1), the energy E is expressed in terms 
of ki by means of the formula E = kif2J..t1 - a 2/2J,.t23 • 

Therefore in this case the last term in formula (42) 
is obviously equal to iact ( 0 )k1• If the energy E is 
negative and IE I « a 2/2J,.t23, then we can neglect 
in the denominator of (42) the second term com­
pared with the first and third. Then, as expected, 
the quantity C ( E ) is 

(45) 

Let us ascertain now under what conditions the 
particles 1, 2, and 3 can form a bound state. Based 
on the results of Ansel'm et al [SJ it can be stated 
that the quantities A( k~3, E) and A( kb E) have 
two poles on the complex plane E on the physical 
sheet where 0 :::; arg E :::; 21r, 0 :::; arg ( E + a 2 /2J,.t23 ) 

:::; 21r, if a ( 0) < 0 or respectively act ( 0) < 0, and 
one pole in the opposite case. In both cases, one 
of the poles is located in the region of large nega­
tive energies. In order to determine the position 
of this pole, it is possible to neglect in the formula 
(35) for A(kb E) or, respectively, in formula (42) 
for A ( k~ 3, E ) , all the terms in the denominator 
which grow at large energies more slowly than E. 
From the equation obtained it follows that this pole 
lies at E = E 0 "' - J..t2/r02• 

Thus, the pole E0 lies outside the region where 
the theory is valid. Inasmuch as there are no more 
poles on the physical sheet when a ( 0 ) > 0 or ad ( 0) 
> 0, particles 1, 2, and 3 cannot form a bound state 
if a(O) > 0 or act(O) > 0. When a(O) < 0, or, re­
spectively, ad ( 0) < 0, there is one more pole on 
the complex E plane. It should be located on the 
real axis when E < 0 and corresponds to the bound 
state of the three particles. 

The results of this section are valid also for the 
decay case. In the case of decay particles, it is 
necessary to use in place of (24) 

~ '¥~ (0, 0; R) 1f E (R) d6R = 0, E =I= 0, (46) 

where >¥0( 0, 0, R) is the wave function for E = 0, 
determined for the complex-conjugate potential. 
In the Green's function (22), the product 

* <Pk23 (r23) <Pk23 (r23) must be replaced by the prod-

uct <Pk2/r23 ) cpk23(r2J), where the function 

<Pk23 ( r 23 ) should be calculated with a potential that 

is the complex conjugate of the potential V23(r23 ). 

The formulas for A(k~3 , E) and A(k~3 , E) remain 
in this case the same as before, but the param­
eters a ( 0), ad ( 0), a23, and p 2 are generally 
speaking, complex. 

Thus, if I a 23 1 » r 0, the energy dependence of 
the amplitude (1) is determined by formula (2), in 



THE ROLE OF SHORT-RANGE THREE-PARTICLE FORCES 1023 

which one should substitute in place of A( E) the 
quantities A( kb E) or A( k~3 , E), determined by 
formulas (35) and (42). The elastic scattering 
amplitude of particle 1 on the bound state is de­
termined by formula (44), while the inelastic scat­
tering amplitude is determined by formula (40). 

The author is grateful to A. A. Ansel'm and 
V. V. Anisovich for useful discussions. 

APPENDIX 

Let us integrate with respect to d3k1 in formu­
las (22) and (23) for the Green's function GE(R, R' ). 
Then the Green's function is written in the form 

tr , (rd (P *, (r:,) 
· ' 1 2[LI ~" 3 ' kC:l k21 ., 

Grc (R., R. ) = -- (''~!" 7:~ d k23 , 
-" 1" I PI-P, I 

G~l (R., R.') =- e (- a2s) ~~~qJd (rd qJd (r~J 

exp {i) E (:x) I Pt -- P~ I } . 
X --~---,--:_____ 

I Pt- p~ I , 

= - i I y E (kd I , when y~ (kza) < 0; 

(A.2) 

Inasmuch as IYE(kb)- Yo(kb>IIP1-Pi I« 1 
for all kb, the exponential in the last term of (A. 7) 
can be expanded in powers of I Pi - p'{ I, until 
decreasing terms are reached, after which we 
obtain for ~ ( R', R") the formula 

~(O' O") _ 1 2[tt~ ( ') * ( ") 
1\, '1\, -- (2:rt)34n qJ' r2s qJ' r28 

k23 k23 

X exp { -Yo (k~s) I p~ - P~ i} 

x lyE (k;.) - yo (k~3) 1 d3k;3. (A.8) 

If we replace the exponential in (A.8) by unity, 
and substitute formula (37) for the function 
<Pk23 ( r 23 ), then the integral obtained will diverge 
logarithmically at large kb. Consequently, in the 
integral (A.8) the large values of k23 ~ r 01 are 
significant, and the use of (37) is not valid. How­
ever, if we rewrite identically ~ ( R', R") in the 
form 

X exp { -Yo (k;3) l P~- P~ I} 

(A.9) 

(A.4) X exp {-Yo (k;3) I P~- P~ I} 

We now substitute (A.1) in formula (31). Then 
the expression for G~l(R, R') and G~Sl(R, R') can 
be expanded in powers of I p1 - Pi I, discarding the 
terms that tend to zero when I p1 - Pi I - 0, and 
use formula (33) for the functions <Pd ( r 23 ). We 
then obtain 

f (E) = V (-a ) __2("._ a* (0) 2f.tt . [( 3'!__ --'-- E)'/, 
23 8:rt' a (U) M 1 2[tza ' 

+(c.:::_)'/,]+ f (E); (A.5) 
\2[-lza 

f(E) =- a~O) ~ '¥~(0, 0; R.') V (R.') ~ (R.', R.") 

XV (R.") '¥0 (0, 0; R.") d6!( d6R". (A.6) 
: 

The function ~ ( R', R") is in turn equal to 

~ (0' 0") 1 2[-lt e\ ( ' ) • ( " ) 
" ' 1\, = - (2Jt)3 4:rt qJ ' rza qJ ' rn 

• k23 k23 

exp {-ro (k;3) I P~- P~ I} 
X , " 

I P,- Pll 

X [1- exp {- [y£(k;3)- Yo (k;s)ll p~- p~ I }I d3k;a. 

(A.7) 

(A.10) 

then the kb ~ ail are significant in the second 
term of (A. 9) [ ~ 0 ( R', R" ) is a certain function 
that does not depend on the energy]. Therefore 
the exponential in the second term of (A.9) can 
be replaced by unity and formula (32) can be used 
for the functions <Pk23 ( r 23 ), after which the second 
integral in (A.9) can be readily calculated. Upon 
substitution of the first term of (A.9) into formula 
(A.6) we obtain a certain indeterminate constant, 
multiplied by E, and upon substitution of the sec­
ond term we obtain a certain known function of E, 
multiplied by I a( 0) /2• As a result of these calcu­
lations we obtain for f( E) the expression 

J (E) = / 1 (E) a* (0)/a (0), (A.ll) 

where f1 ( E ) is determined by formula (36), and 
the constant p - 2 is equal to 

:. = 1 I a\OJ.I" ~ '¥~ (0, 0; R. ') V (R. ') E 0 (R. ', R.") V 

(A.12) 

In order to obtain for p - 2 formula (30), it is nee-
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essary to replace in formula (A.10) the exponential 
under the integral sign by unity, use formula (28) 
for the functions q~k23 (r23 ), and calculate there­
sultant integral, which is cut off at kb ~ r 01• 

Let us explain now how to obtain formulas (40) 
and (41) of the text for A( k~3 , E), valid when a23 
< 0. In this case a( 0) is complex. The connection 
between a( 0) and a*( 0) can be determined from 
the requirement that C ( E ) [formula (29)] at E = 0 
be equal to unity: C( 0) = 1. The amplitude a( 0) 
must be expressed in terms of act ( 0), using for 
this purpose formula (38) with k1 = 0, E = - a 2/2J.t23 . 
The function A( kb E) is determined from the ob­
vious equality 

A (k~3 , £) =A (k~3 • E)/A (- a2 , - a2/2~-t23), 

in which it is necessary to substitute in place of 
the amplitude a( 0) its expression in terms of 
act(O). 
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