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Wave scattering on plasma fluctuations can result in the conversion of one characteristic 
wave mode into another. We find the electromagnetic radiation and the intensity of longi­
tudinal waves due to conversion in a nonisothermal plasma. The spectral correlation 
functions of various quantities characterizing the fluctuations are determined. 

l. The scattering of electromagnetic waves on 
plasma oscillations has, in recent years, occupied 
the attention of a number of workers in connection 
with plasma diagnostics and the physics of the iono­
sphere and of the solar corona. [1-4] 

Ginzburg and Zheleznyakov [5] and Sturrock [G] 

have pointed out the possibility of conversion of 
longitudinal waves into transverse waves in scat­
tering on thermal fluctuations in a plasma as a 
possible explanation for type I and II bursts at 
frequencies Qe and 2Qe in the spectrum of 
sporadic radio radiation from the Sun ( Qe is the 
Langmuir frequency). However, a quantitative 
theory has been developed only for scattering of 
electromagnetic waves on plasma waves (cf. [1- 4J). 
Furthermore, in general, electromagnetic waves 
can be radiated not only by conversion of longi­
tudinal waves, but also by the conversion of any 
characteristic wave into a transverse wave in 
scattering on plasma fluctuations. 

In the present work we have investigated the 
scattering and conversion of different kinds of 
waves due to the interaction with thermal fluctu­
ations in a nonisothermal plasma. (We adopt the 
convention that scattering occurs if the output 
wave is a wave of the same kind as the incident 
wave and conversion occurs if the output wave is 
different from the incident wave.) 

2. It is well known that four kinds of character­
istic waves can propagate in a nonisothermal 
plasma when Te » Ti (Te and Ti are respec­
tively the electron and ion temperatures in energy 
units); these waves are described by the following 
dispersion relations: 

s; = 3T,jm longitudinal electron (1) 

s7 = 3T t! M longitudinal ion 

s2 = T ,j M acoustic 

( m and M are the electron ion masses and N is 
the density of the ions or electrons ) . 

(3) 

(4) 

Each of these wave types can be scattered or 
converted into a wave of a different type as a re­
sult of a wave-wave interaction. There are limi­
tations, imposed by energy and momentum conser­
vation, on the frequency and wave vector of the 
scattered (converted) wave, however, so that not 
all of the indicated conversion processes can, in 
fact, occur. We give several examples. 

Suppose that a wave characterized by frequency 
w0 and wave vector k0, obeying the dispersion re­
lation w0 = cp 1 ( k0 ), is converted into a wave of 
frequency w, wave vector k, and dispersion re­
lation w = cp 3(k) in scattering on a wave with fre­
quency w' and wave vector k'. Energy and mo­
mentum must be conserved so that 

k' = k-k0 • (5) 

The dispersion equation of the wave on which 
scattering occurs w' = cp 2(k' ), together with the 
dispersion relation for the scattered (converted) 
wave, determines uniquely the frequency and ab­
solute magnitude of the wave vector of the scat­
tered (converted) wave. Conversion occurs if 
these equations have real solutions and if fre­
quency of the scattered wave is higher than the 
Langmuir frequency. 

We now consider several particular wave inter­
actions. 

a) A transverse wave scattered on a longitudi­
nal wave. The dispersion equation for the longi­
tudinal wave on which scattering occurs is 

(2) 
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(6) 
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Neglecting the second term in the right side of (6) 
and using (2) we find w = w0 ± fJe (combination 
scattering[1J). The doublet line arises if the fre­
quency of the incident transverse wave is greater 
than twice the Langmuir frequency. If the neg­
lected term is to be small ( s~( k- ko )2 « fJ~) 
there must be an upper limit on the frequency of 
the incident wave 

b) A longitudinal wave scattered on a longitudi­
nal wave and converted into a transverse wave. 
Solving the dispersion equation for the longitudi­
nal wave (6) and using (1) and (2) we find w = 2fJe. 

c) A wave characterized by the dispersion re­
lation w0 = cp ( k0 ) scattered on a wave of the same 
kind so that the dispersion relation for the output 
wave is of the same form w = cp ( k). According 
to (5) the dispersion relation for the wave on which 
scattering occurs is w-w0 = cp(lk-k0 1) or cp(k) 
- cp ( ko) = cp (j k- ko I). Setting k and k0 equal to 
zero in turn, we easily verify that this condition 
is satisfied only when cp ( k) = 0. Thus, this scat­
tering process cannot occur. 

d) An ion longitudinal wave scattered on an ion 
longitudinal wave and converted into a transverse 
wave. The dispersion equation for the ion longitud­
inal wave on which the conversion occurs is of the 
form 

(w - w0)2 = Q~ + s7 (k - k0) 2 • 

Solving this relation and using (2) and (3) we obtain 
the frequency of the transverse waves w = 2fJi. A 
transverse wave with frequency lower than fJe, 
however, obviously cannot be propagated in the 
plasma. 

3. The frequency of the scattered (converted) 
wave obtained from an analysis of the dispersion 
relations is obviously independent of the method 
of excitation of the interacting waves. To compute 
the intensity of the scattered (converted) wave one 
must make some assumptions as to the scattering 
mechanism. We consider the case in which the 
scattering occurs by virtue of thermal fluctuations 
in the plasma. In this and the next section we con­
sider the interaction of high-frequency waves. 
Under these conditions the ion motion can be neg­
lected. Scattering and conversion on low-frequency 
waves are treated in Sec. 5. 

It will be shown below that conversion is due to 
spatial dispersion so that the problem is treated 
most conveniently in the kinetic approximation. 

We write the distribution function in the form 
f = fo + f1 + f2 + f3 where f0 is the equilibrium dis-

tribution function while f1, f2, and f3 are correc­
tions due respectively to the field of the incident 
wave, the fluctuations, and their interaction. The 
field E is the sum of the field of the incident wave 
E1, the field due to fluctuations E2 and the field 
of the scattered (converted) wave E3. In order 
to use successive approximations we assume that 
I f3l « I f1 I and I f2 I and I E31 « I E1 I and I E2 1. 

The starting equations for the distribution 
functions are 

of,+ v'Vf = - eE ofo - _b_ 
at 1 1 ap -r • 

(7) * 
of• + 'Vf E ofo t. Tt v 2 =- e 2 iJp - T + y (v; r, t), (8) 

(9) 

As is usually done in the general theory of fluc­
tuations we have introduced random forces y(v; r, t) 
in the right side of (8). Furthermore, in (7) and 
(8) we have neglected terms containing af1 /ap and 
af2/ap. These terms are of higher order than the 
other terms in (7) and (8) but, in general, are of 
the same order as the terms in (9). The first of 
the neglected terms characterizes the nonlinear 
effect of the interaction of the wave with its own 
field; it can be shown by calculations similar to 
those presented below that this term does not 
make a contribution to the intensity of the con­
verted wave. The second term neglected in (7) is 
a small correction for the intensity of the ther­
mal radiation and will not be considered. 

The correction to the equilibrium distribution 
function f3 can be written in the form f3 = f~ + f3, 
where f~ is proportional to the field of the scat­
tered wave while f3 is determined by the cross 
term in (9). The quantity f~ is responsible for 
the usual contribution to the dielectric constant 
of the plasma and is considered below in (10) and 
(11). The quantity f3 determines the current that 
produces the scattered wave. 

The vector and scalar potentials A and cp, that 
describe the field of the scattered wave ( div A = 0) 
satisfy the equations 

~tr iJ2A ~I iJ 4:n: • 
AA------gradm= --] (10) 

c2 at• c at "' c ' 

'f/ A<p = - 4n p, (11) 

where €tr and €Z are the transverse and longitud­
inal dielectric constant operators; [s] 

*[vH,] = v x H,. 
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p (r, t) = e ~ f~dv 

is the charge density and 

j (r, t) = e ~ f~vdv 

(12) 

(13) 

is the current associated with the field of the scat-
tered wave. 

The change in the radiation energy of the scat­
tered or converted wave per unit time is given by 
the expression C7J 

(14) 

Here, the first term determines the intensity of the 
electromagnetic radiation while the second gives 
the strength of longitudinal plasma waves. 

The expressions in (10) and (11) can be used to 
express the vector and scalar potentials in terms 
of the current j and charge density p. Fourier 
analyzing (9) and (10) we have 

A (k, w) = 4:n: j (k, w)- k (kj(k, w)) k-2 ( 15) 
c k2 - (wjc)2a1' (k, w) 

rp (k, w) = 4:n:p(k, w) I k2eJ(k, w). (16) 

We introduce the quantity I = -oW /at, the radia­
tion intensity of the scattered (converted) wave. 

Taking the Fourier component from (13), sub­
stituting in (14) and carrying out the integration 
over k by means of the formula 

-1-1 .0 = p_!__i:n:o(x), 
X- t X 

(17) 

after statistical averaging we obtain the electro­
magnetic radiation per unit volume, unit solid 
angle, and unit frequency interval 

1 aJtr -- (2:rt)5 w2 •• • ( kzkk) .. .r tr v awaa - ·--z;-cs (]i]k)kw Otk -v, r e (w, k), (18) 

where (hh~)kw is the current spectral correlation 
function. 

In similar fashion, using (13), (15), and (16) and 
the equation of continuity, we find the spectral in­
tensity of the longitudinal waves: 

a[ < .. *> k(s)k(s) 
_1__ __ l _ = (2:n:)5 h 1t1 k kro i k _ _!_ (19) 
v aw aa 2 . 1 as1 (k w);ak 1 w ' 

s , k=k(s) 

where k(s) = k(s)(w) is a root of the dispersion 
equation for the longitudinal waves (}( w, k) = 0 
and the summation is carried out over all roots 
of this equation. 

4. In order to find the intensities (18) and (19) 
in explicit form we must determine the Fourier 
components of the current correlations. 

Solving (9) in the Fourier representation we 
find the correction to the equilibrium distribution 
function due to the wave interaction 

. F, (ulo, ko) ()[" (w', k')/ilp + F2 (w', k') iJf, (wo, ko)/8p = - l ---·--- . 
w -- kv -l- i /T ' 

. (20) 

where F = eE + ew- 1v x (k x E). 
Using (13) and (20) we express the current spec­

tral correlation function in terms of the correlation 
functions for the distributions and field fluctuations: 

/' ·'', (e)2 ('\' () vi a vk 
<J;J~<Ikw = Iii .L av; co- kv + i!T: av ,---- w- kv'- i/T 

m 

X {FllF~m (fz (v) f; (v'))k'w' + f1 (v) f~ (v') (F21F;m)k'ro' 

+ F11f~ (v')(f2 (v) F;m)k'w' 

+F~mf1 (v)( f;(v') F2t)k·w·}dvdv'. (21) 

Thus, to determine the current correlation func­
tion we need the correlation functions of the field 
fluctuations and distribution functions. Using (7) 
we write the Fourier component of the distribution 
function f2 in terms of the Fourier component of 
the random forces 

f (v) = _ ie (E2v) iJfo!i!~ _L i y (v; w, k) (22 ) 
2 w-kv+i/T 1 w-kv+i/T • 

Using the results of [S] we find the Fourier com­
ponent of the mean values of the products of the 
random forces: 

(2:n:)4 (y (v) y*(v'))kw = ! fo (v) o (v- v'). (23) 

Averaging the product of intensities of the fluctu­
ating fields and using (23) we find [B] 

(24) 

Using (22)- (24) and letting T approach infinity, 
we find the correlations of the distribution functions 

(2:n:)4 <f~ (v) tr (v'))kw = 2:nf0 (v) o,bo (v- v') o (w- kv) 

+ 8:n:we2 fa b , l- 4w2 I vp~1jlik 
-~ o(v)fo(v) czT"Tb (co.,--kv+iO)(w-kv'-iO) 

1 v,v~ Lik ' + -a- k + ·o o ( w - k v ) T w- v t 

1 v'.vkL~k J + -b--'-k---~0 o (w- kv) , T w- v -t 
(25) 

where for convenience we have used the notation 
(27T) 4 (EiEk) = (47rw/c2 ) 2(w/27r)l/Jik while Lik(k,w) 
is the Fourier transform of the Green's tensor in 
the Maxwell equation: [9] 

(26) 
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In (25) the indices a and b denote the particle 
species and the upper (lower) sign is taken in the 
case of similar (different) particles. Equation (25) 
goes over to the corresponding formula from [B] 

for the case of a longitudinal field. 
We also give the expression for the correlation 

(f2Fi>kw required for computing the current cor­
relation function by means of (21): 

+ 2:rrL~1vtf~ (v) 6 (w- kv) J. (27) 

In general, the formulas obtained above allow 
us to compute the intensity for both relativistic 
and nonrelativistic cases. Inasmuch as the con­
dition v cp » VT is satisfied ( v cp is the phase 
velocity and VT is the thermal velocity) for all 
waves considered below, which are nonrelativistic, 
in using (25) we can neglect terms containing 
o ( w- k • v): after integration over the equilibrium 
distribution function these terms make a contribu­
tion exp [ - v~ /vt] times smaller than that of the 
other terms in the expression for the current cor­
relations. Direct calculation shows that this pro­
cedure corresponds to neglecting the random 
forces in (22). 

Thus, in this case it is convenient to compute 
the current correlation functions in the following 
way. The solution of (7) is of the form 

f ( k) _ . (E1v) iJfo!iJs 
1 w, - - te wo- k0v + iO • (28) 

Neglecting the term with random forces in (22), 
substituting (22) and (27) in (20), and using (13) we 
write the current expression in the form 

(29) 

where 

i} v1 f~(s) \ v1 

X iJpm w'- k'v + i/T dv ~ w- kv + i/T 

{ 1 ' , } i} vio (s) 
X Otm + (;)' [kmVt- Ozm (k v)] i}pm Wo-koV + i/Tdv. (30) 

We note that (29) vanishes if spatial dispersion is 
neglected. 

Lettint T approach infinity and expanding the 
integrand in powers of k ·vI w "' VT /v cp « 1, after 
integration we find 

In the case of a quadratic dispersion relation we 
have A= - 3N/4mn. 

Averaging the product of the currents (29) and 
using (24) we find the current spectral correlation 
function for a Maxwellian distribution ( r 0 = e2/mc 2 ): 

(2:rt)4 (jJj, )kw = -2
1 '"., Qiw ' 3EltE;m'IJJpr (k', W ') Ctpfkmr· 
lt me- (32) 

It is evident from (24) and (32) that the scatter­
ing exhibits a resonance. Using the fact that the 
imaginary part of the dielectric constant is small 
it is easy to show that the corresponding terms in 
(24) are proportional to y/[ w- Ws )2 + y2 ] where 
y is the damping due to the imaginary part of 
d k, w) and Ws is the frequency of the scattered 
(converted) wave. For scattering on longitudinal 
waves we have 

while for transverse waves 

ro• 
cp (k, w) = k2 - C2 e}r (k, w). 

5. Substituting (32) in (18) and making use of 
the fact that the attenuation is small we obtain a 
final expression for the spectral intensity of the 
electromagnetic waves produced by scattering of 
longitudinal waves on transverse waves: 

- w-n. ~-r 
c• 

2 

X"' r (o1k- n;nk) notnom (op,- n~n~) Ctpfkmr, 
kJ (ro- ro.)" + r• 

S=[ (33) 

where 

ko 
Do= ko' 

k 
0=1· 

k' 
n' ·= k',; 

(ro~- cr•) w0 + (ro~ (ro~- a.2)2 - 4 (ro~- a."cqs26) (1/, (ro~- cr2) 2 + cx2Q~cos26)]'i•. 
001.2 = 2 (ro~- a2 :c6s2 0) ' 
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The analysis is rather complicated for arbi­
trary e. We limit ourselves to the cases (} = rrl2 
and (} = 0. In the (} = rrl2 case the scattered wave 
is at a frequency w = Qel2 - a 212Qe < Qe so that 
conversion is forbidden. When (} = 0, the fre­
quency w = Y2 [ Qe + a 2N a 2 - Q~] and conversion 
is allowed if w > Qe. This leads to the condition 
Qelse » ko » Qelc. 

The electromagnetic waves due to scattering 
of longitudinal waves on longitudinal waves are 
characterized by an intensity 

_!___ ~ = ~ r gs s~ / E J2 i 
V iJwiJo V3 o e c 1 (ro-2.Q.J2+r2 

(34) 

In similar fashion, using (13) and (32) we find 
the intensity of longitudinal waves due to scatter­
ing of transverse waves and longitudinal waves on 
transverse waves 

6 2 -1 
1 iJ/ ,on. v-~--l n. (k'n) w' I • 
Vawao=18s~ e (ros) k(w J7-C2 (w-w)2+i2 

e S=l s e s 

(35) 

When the incident wave is a transverse wave 
w1,2 = Qe + ow1,2 where 

We note that conversion is impossible when (} = rrl2. 
When the incident wave is a longitudinal wave 
E1 = E1n0 and the frequency shift is w- Qe 
= ow1,2 where 

The intensity of longitudinal waves due to scat­
tering of transverse waves on longitudinal waves 
is 

(36) 

As we have indicated, scattering of transverse 
waves on longitudinal waves has been treated in 
[ 8]. The corresponding expression for the inten­
sity of the electromagnetic radiation can be ob­
tained from (18), (24), and (32). 

6. The interaction of low-frequency waves, the 
ion longitudinal wave and the acoustic wave, can 
be treated using the same technique as that used 
above for the high-frequency waves. After substi­
tution of the appropriate quantities the interaction 
with ion longitudinal waves is described by the 
same formulas obtained above for the electron 
longitudinal waves. 

In the case of low-frequency waves we need 
not consider spatial dispersion in (7) and (9) since 
the frequency shift is small (as indicated above 
we cannot neglect spatial dispersion completely). 
This corresponds to the condition k . vI w « k'. vI w' 
i.e., Vcp » v~ which is satisfied for low-frequency 
oscillations. Neglecting k • v compared with w in 
the denominator of (20) and using (13) we write the 
current expression in the form 

(37) 

where 

P1.2 (w'·, k') = 11 (M Pi.2 + mp~,2)/ (m-t-M), 

11 =mMj(m+ M) 

(the indices 1 and 2 refer to the incident and scat­
tered wave respectively). 

Consequently, the mean of the product of the 
currents is expressed in terms of the spectral 
correlations of the field fluctuations and the fluc­
tuations in particle density. Using Poisson's 
equation for the field fluctuations and the expres­
sion for the spectral correlation function for the 
particle density given in [8] we find the current 
correlation 

. ·' 2 e2 I k(Ws)- ko 12 I X~ j2 r 
<Ji]k)kw = Jt2 ;iii ~(J)~ (ros- Wo) I iJsjiJ(fJ lw=O>s (w- ros)2 + r• 

T elm x! + T1 lm x~ 
X " S;k, s 

(38) 

where 

(Expressions for the susceptibility Ke,i are given 
in [?].) 

Substituting (38) in (18) and (19) we determine 
the intensities of transverse and longitudinal waves 
due to conversion and scattering on low-frequency 
oscillations. 

Scattering of electromagnetic waves on sound 
waves has also been studied in [8]. We note that 
the scattered wave spectrum contains an additional 
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peak at the ion Langmuir frequency. Furthermore, 
radiation of transverse waves can occur by virtue 
of conversion of longitudinal waves in scattering 
on low-frequency oscillations. The radiation in­
tensity for conversion of longitudinal electron 
waves into transverse waves in scattering on ion 
longitudinal waves is found to be 

___!__ __i)j_ = (2n)• .!:__ k'2 21 xz 12 r. Im -x,~ + Ti Im -x,~ 
v aw ao c3 Qi e ll" 

(39) 

Electromagnetic waves can also be radiated by 
scattering of low-frequency waves on high-fre­
quency waves. For example, in scattering of the 
ion longitudinal wave on the electron longitudinal 
wave the radiation intensity is given by (34) where 
the resonance factor is of the form 
'Y I { [ w - ( Sle + Qi) ]2 + 'Y2}. 

The intensity of longitudinal oscillations for 
scattering on low-frequency waves is given by 

1 81 4 2 "V I k (W5)- k (wo) I" 1 
V aw ao = ne Li I a , (k' ')18 I 14nxz 12 s w~(ws-Wo) a ,w w "'="'s e 

T elm -x,~ + T i lm -x,~ y _:_ _ __::____-;;-, __:_ _ _:_ ( )" + 2 siknink. 
8 w- (i)s. r 

(40) 

7. Conversion and scattering on free particles 
can be treated starting from the expression for the 
distribution function correlations. In this case we 
retain only the first term il). (25). Using (21) and 
(25) and neglecting terms due to spatial dispersion 
in the denominator of the integrand we find 

(41) 

whence, using (18) and (19) we obtain an expression 
for the intensity of the electromagnetic radiation 

___!___ ~ _ :!_ (2n)'/, 2 .!.._ VEtr (w) 
\' aw ao - 2 3 roN k' 

Se 

(42) 

and for the intensity of longitudinal waves 

__l _ _!!_ = 2n (2n)'/, ~ !!_ 
1' aw ao 3 m2 s e 

8. Another mechanism for scattering and con­
version, in addition to thermal fluctuations, is 
plasma turbulence. 

We consider conversion of high-frequency waves 
on turbulent fluctuations. Since the frequencies of 
the turbulent oscillations are small compared with 
the frequency of the incident wave we can neglect 
the frequency change in conversion. Starting with 
the linearized hydrodynamic equations and taking 
account of the situation indicated above it can be 
shown that because the velocity of sound is small 
compared with the phase velocity of the incident 
wave the current expression becomes 

(44) 

Averaging the product of the currents and using 
the equation of motion we have 

(45) 

If the turbulence is uniform and isotropic the 
mean square density given by Villars and Weiss­
kopf [10] can be used; in this case (45) becomes 

..• > e4 P~ ( So\'/, 1 E E* < ]ih koo = m254 w2 p; J I k _ ko j'la li lk, 
0 

(46) 

where S0 = p0v3/L0 is the energy flux correspond­
ing to the largest-scale fluctuations L0, s 0 = ~T/M . 

Equation (46) applies in the equilibrium region. 
The scattering of electromagnetic waves on turbu­
lent fluctuations has been studied in [10]. The 
corresponding result can be obtained from (18) 
and (14). 

The radiation intensity of electromagnetic waves 
produced by conversion of longitudinal waves is 
found to be 

_!_ _j}_ - (2n)5 ~ P~ (So)'/, y;tr /£2/ sin2 8 
v awao - 4 m2s4o c8 Po I k - ko ['/, 1 • 

Similarly, the intensity of the longitudinal 
waves is given by 

(47) 

_!_ __i)j_- (2n)5 ~ 2 (~)•;, V~~ I El'''" f2 (48) 
V awao - 4 m2s6 Po Po T I k - ko I'/, ' 

0 

In conclusion the authors wish to thank A. I. 
Akhiezer, I. A. Akhiezer, and A. G. Sitenko for 
valuable discussions. 
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