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A plane monochromatic solution for an electromagnetic field inside a layer with a negative 
absorption coefficient is considered. 

1. The problem of the radiation of a quantum gen
erator can be stated as an ordinary boundary prob
lem in electrodynamics. It is well known, however, 
that in its general form the solution of this kind of 
problem is extremely complicated and requires a 
reasonable simplification of the conditions. We 
shall consider the characteristics of a quantum 
generator from this point of view. 

The saturation effect, which determines the 
steady state of generation, brings about a non
linearity in the material equations. A change in 
the dielectric permeability E is associated with 
the change in level populations in an external field. 
Since the relaxation time of the population is much 
longer than the period of vibration of the field, E 

is determined, not by the instantaneous value of 
the field, but by the value of its energy averaged 
over a period. In this way, saturation leads only 
to the result that E depends on the amplitude of 
the field as a parameter and not on time. 

At the present time an expression for E is 
known only for the case in which the strong field 
causing the saturation is monochromatic. [1, 2] 

Hence, we shall consider the case of steady-state 
generation in a monochromatic field. 

Because of diffraction at the edges of the inter
ferometer mirrors, the field depends on all three 
coordinates. As calculations have shown, [a] the 
field amplitude can for this reason vary signifi-
cantly over the mirrors of the generator. In order 
to simplify the problem, we shall assume below 
that the steady-state field varies only in a direc
tion perpendicular to the mirrors. 

The dielectric constant can be represented in 
the form 

e = e0 + !:J.e, (1) 

where t.E is determined by that pair of levels in
volved in the generation, and Eo is given by there
maining levels and the "solvent" (the host lattice, 
etc.). In the majority of cases t.E is extremely 

small. Actually, the order of magnitude of the 
steady-state value of t.E can be found from the 
familiar relation 21rZA. - 1 Im t.E = 1- r, where r 
is the reflection coefficient of the mirror coat
ings, l is the distance between the mirrors, and 
A. is the wavelength. In many cases r is nearly 
unity, so that 

2nl'A -I Im ~e < 1. (2) 

This circumstance will be exploited below. 
Let a layer of a substance with a negative ab

sorption coefficient be placed between the planes 
x = 0 and x = l . External to this layer there are 
homogeneous media with dielectric constants E 1 

(x < 0) and E2 (x > Z) (Fig. 1). In actual arrange
ments highly reflective metallic or dielectric coat
ings are applied to the active layer. It is easy to 
see, however, that physically the essential thing 
is the reflection and not the means of obtaining it. 
Hence, in order to simplify the calculation, we 
shall consider the configuration of Fig. 1, in which 
the necessary reflection is provided by the discon
tinuity in the dielectric constant. 

£, 

--~-------r.--~~x 

FIG. 1 

The wave equation for a plane monochromat~c 
field has the form (time dependence chosen in the 
form e-iwt) 

d2E/dx2 + ro2c- 2e1£ = 0, 
d2E/dx2 + ro 2c-2 [e0 + ~e (IE I)] E = 0, 

d2E/dx2 + ro2c- 2 e2 E = 0, 

x<O, 

O<x< l, 
x> l. (3) 

In order that only receding waves propagate out
side of the layer, we shall seek solutions external 
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to the generator in the form 

E=A 2 exp(i ~ ~x), x>l. (4) 

It can be seen from Eqs. (4) that the relations 

d_E_ = - i ~ -.181£ x < o· dx c r "1' , , 

ddE = i .!'!.__ ~E, x > l. 
X C 

are fulfilled outside of the layer. 
Making use of the continuity of the tangential 

components of the electric and magnetic fields 
and the relations (5), we obtain the following 
boundary conditions: 

dE . (J) v--= -t- e1 E 
dx c ' 

X= 0; 

X= l. 

(5) 

(6) 

The general solution of Eq. (3) for 0 < x < l can 
be represented as 

E A .2:n:x B 2:n:x 
0 = stn - + cos-

').., ').., ' 

(7) 

Ez satisfies the integral equation 
X 

E1 = - .2:n: ('sin [2~ (x- ~)J [Eo m 
J..,Bo .) _ 11. 

0 

(8) 

The ratio A/B is determined from the boundary 
condition (6) for x = 0; it is A/B = -iV EdEo. 

Consequently, 

E A [ . 2:n:x + . -. /eo 2:n:x J 
0 = s1n-'A.- tV a,cos--r- • (9) 

The boundary condition (6) for x = l reduces to a 
system of equations in A and Z: 

A ( 1 I ... ~~\) 2rr.l - - ').., R dE, ... ;e; I E 
-r V c' cos-"-- 2:n: e[['X- V eo m 1• 

A ( ... ;eo- I ... ;e; \1 . z:n:z _ " 1 dE, ... ;-e:; R E V 8t 1 V eo; smT- 2:n: m dx- V eo e 1 ' 

(10) 

In accordance with Eq. (2) we shall assume that 
J.1. = ( 2rrl/71.) max b.€ « 1. Then we can show from 
Eq. (8) that E1 is a small correction to E0: 

Using Eq. (11) and the boundary conditions in 
the form (10), we have 

I 
cos (2:n:1 ) 1 < _fl_ (1 + -ve;;e.; + v~ ) , 

').., 1 --;"" f1 1 + f e2/E1 

I . (z:n:l) I< f1 (1 + 1 + v~ ) (12) 
Sill T 1 - f1 V E2/Eo + V Eo/Et) • 

These inequalities are consistent only if one of the 
following four conditions is fulfilled: 

1) cos (2:n:l/'A.)- fl, Y e,feo- 1/fl, Veieo~fl; 

2) cos (2:n:l//o) - fl, Ve1/eo -fl, Ve2/eo ---" 1/J.L; 
3) sin (2:n:l/'A.) ~ fl, Ve,!eo- l!J.L, Ve2/eo -1/J.L, 

4) sin (2:n:l/'A.) - fl, Vetfeo -fl, VeJeo ~ J.L. (13) 

The physical significance of these conditions is 
obvious. Since J.1. is small all the possible condi
tions (13) correspond to a large discontinuity in the 
dielectric constant at the boundaries of the layer, 
which is provided by a large reflection coefficient. 
The first two cases correspond to an "unsymmet
rical" change, i.e., either the left dielectric con
stant E1 is much greater than Eo and the one on 
the right much less, or the other way around. The 
latter two cases correspond to both the left and 
right dielectric constants being either larger or 
smaller than € 0• The change in the form of the 
trigonometric function ( cos or sin ) is obviously 
associated with the so-called "half-wave loss" 
upon reflection from an optically denser me
dium. Since J.1. « 1 either sin ( 2rrl/'"A.) or 
cos ( 2rrl/'"A.) should be close to zero. This means 
that the length of the generator should be a whole 
number of half-wavelengths or a whole number of 
half-wavelengths plus a quarter wave (to compen
sate the discontinuity in phase upon reflection). 
All the cases (13) lead to the same physical con
clusions. For the sake of definiteness, we shall 
consider case (3) below, i.e., FE; ~ 1, -fE; ~ 1/J.J., 
-IE; ~ 1/j.J.. 

As a consequence of the smallness of J.1. we can 
set E1 = 0 in the integrand of Eq. (8). Then, to 
terms of the order J.J.2, the field inside the gener
ator is 

E ( ) A ( . 2:n:x 1 . • .. ;-;,; 2:n:x ) 
x = sm~ 1 tV ~cos~. 

X 

2:n: ~ . 2 X- ~ A . 2:n:£ A (1 A . 2:n:£ 1) dt -- sm :n:--· · sm-.- ·Llf! sm- .... 
AEo , 'A. A ').., 

0 (14) 

Thus, for high reflection coefficients the field in
side the layer has the form of an almost-standing 
wave A sin ( 2rrx/'"A ). The second and third terms 
are small in comparison to the first; i.e., the am-

I £1 I< 1 ~ f1 ( 1 + V ::) A, 

~ \ dE,l <~fl ( 1 +-./Eo ) A. 
2:n: dx 1 - f1 V e, 

(11) plitude of the field varies little. 

' 
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It should be noted that because of the saturation 
effect the generating medium becomes inhomogene
ous. In our approximation, i}.E is obviously a peri
odic function of x with period A.l2. This inhomo
geneity is greater, the stronger the field, and the 
larger the saturation effect. We also note that this 
inhomogeneity of the medium means that the meth
ods of geometrical optics are inapplicable. 

3. It is known that the dielectric constant as a 
function of the frequency and field depends on the 
line shape in the absence of external field and on 
the nature of the line broadening. We distinguish 
between broadening caused by relaxation processes 
(homogeneous broadening) and broadening caused 
by the micro-inhomogeneity of the medium, which 
results in a change in transition frequency from 
atom to atom. In this section we shall consider 
only homogeneous broadening; in Sec. 4 the role 
of inhomogeneous broadening will be analyzed. 

According to [1•2] the dielectric constant E has 
the form 

e = e0 + ~e; ~e = ~e' + i~e", ~e' =- ~e" (w'- w)fr, 

~e"-- f3 (15) 
- ((J)'- ()))2/12 + 1 + a2 1 E 12 • 

Here w' is the transition frequency, w is the fre
quency of the field, 2y is the line width in the ab
sence of saturation; the coefficient a2 is deter
mined by the matrix element of the dipole moment 
of the transition under consideration and the prob
abilities of relaxation processes; the quantity {3 is 
related in the usual manner to the number of exci
tations of the system in 1 cm3 per second and the 
atomic constants. For the sake of simplicity, we 
here consider the case when the frequency of the 
field coincides with the transition frequency, w' 
= w. In principle this does not change the method 
of calculation and the basic qualitative conclusions. 

From (14) and (15) we have 

E ( ) A { . 2:n: + . [V~ f3 X = Stn- X t - -- ~--
')., e, eo~' A2 

i 1 )2:n:x] 2Jt \ 
X \1- V1+o"A2 T COST xr. (16) 

In Eq. (16) the component that oscillates with pe
riod A.l2 and does not exceed JJ.AA.Il in amplitude 
is neglected. Thus the amplitude varies linearly 
with the coordinate x. This is a consequence of 
our approximation ( ..J Eo IE;, ..J Eo I E2 « 1 ). In the 
opposite case the variation in amplitude will be 
nonlinear and considerably larger in magnitude. 

Introducing Eq. (16) into the boundary conditions 
(10) for x = l, we arrive at the following expres
sions for l and A: 

l = m'J.,/2, (17) 

~2A2 = ~ [(1 + 8~! f3/eo )'/, 
V eofe, + V eo/ e2 

_ 3][( 1 +B:n:/ f3/eo )'/'+!]. 
')., V eo;e, + V Bo/B2 

(18) 

ltistobenotedthat VE01E1 and VE0IE2 are 
associated with the Fresnel reflection coefficients 
at the boundaries x = 0 and x = l, respectively. 
For the case under consideration, that of high re
flectioncoefficients,VE01E1 ~ 114 (1-rd, VE01E2 
~ Y4 ( 1- r 2 ). Then Eq. (18) can be written as: 

_ 3] [( 1 + 16n:! f3/eo )'/, + 1 J. 
')., 1 - (r, + r2)/2 

(19) 

Equation (19) no longer contains the dielectric con
stants of the external media and as such is appli
cable not only to the configuration of Fig. 1, but to 
any other means of creating a reflection coefficient 
on the boundaries of the layer (for which, it is 
understood, 1- r1, 1- r 2 « 1 ). 

Calculating the Poynting vector at the bounda
ries x = 0 and x = l, we obtain the power radiated 
by the generator per unit of area: 

S1 = (cj32:n:)(l-r1)Jf8;;"N, 

S 2 = (cj32n:) (l- r 2) VB;; N. (20) 

Equations (2), obtained for the model of Fig. 1, per
tain to the case when the reflecting structure does 
not absorb radiation. In real reflecting films there 
is always some absorption, which decreases 81 and 
82• Accounting for the absorption involves replacing 
1- r1 and 1- r 2 in (2) by 1- r1- a1 and 1- r 2 - a2, 

where a1 and a2 are the absorption coefficients of 
the reflecting layers at X = 0 and X = z.1> Equa
tions (17), (19), and (20) decide the question of the 
radiation of the generator in the approximation 
assumed. 

For further analysis it is convenient to intro
duce the two dimensionless parameters 

y = o2 A2 = 16 n:o 2 (S1 + S2)/c Jl8";; [l - (rr + r .)/2], 
11 = 2nl~jA.e0 [1- (r1 + r 2)/2]. (2l) 

The parameter y is proportional to the emitted 
flux and is equal to the ratio of the "saturated 
width" to the line width [ cf. Eq. (15)] in the anti-

l) Absorption in the reflecting layers leads also to a dis
continuity in phase upon reflection, which somewhat alters 
the conditions for generation (17). 
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node of the standing wave. The parameter T'J is 
proportional to the probability of excitation of the 
system, i.e., to the energy introduced into the sys
tem to obtain the population inversion, and is equal 
to the product of {3, the maximum of the imaginary 
part of Ll.E, and the resolving power R = w/ow 
= 2rrl/A. [ 1- ( r 1 + r 2 )/2] of a Fabry-Perot inter
ferometer equivalent to the generator in the ab
sence of excitation. 

With this notation, Eq. (19) has the form 

y =-HVI +8lJ-3)(YI +8ll+ 1) 

It is of interest t<;> compare Eq. (22) with the 
conclusions of a theory that does not take the in
homogeneity of the medium into account. Such 
calculations have been carried out for a microwave 
molecular generator [l] the dimensions of which 
were much smaller than the wavelength and in 
which there was consequently no inhomogeneity. 
In our notation, the analog to Eq. (22) looks like: 

(24) 

it is drawn in Fig. 2 for comparison (curve 2). The 
difference between (22) and (24) begins close to the 

1 l-,;---
=2'1'j-2-2Y I +8lJ. 

The presence of a generation threshold follows 
from Eq. (22): 

(22) threshold; the slopes of curves 1 and 2 differ by a 
factor of 1.5. The difference between 1 and 2 in
creases in absolute magnitude as T'J increases; 
relatively, it decreases as 1/ -fry . This 

'I']= I. (23) 

Equation (23) agrees completely with the usually 
cited criterion for the onset of generation. This is 
not surprising, since the generation threshold cor
responds to A = 0, when there is no saturation and 
the medium is homogeneous. From Eq. (23) it fol
lows, among other things, that the parameter T'J 

can be considered as the excitation probability ex
pressed in threshold units. 

Figure 2 shows the graph of y as a function of 
T'J (curve 1 ). Since y is the square of the ratio of 
the saturated width (at the maximum field value) 
to the width y, the ordinates of the graph repre
sent directly the degree of saturation attained in 
the anti_nodes. It can be seen from Fig. 2 that ex-
ceeding the threshold excitation by a factor of 2 
already yields a saturation of order unity and con
sequently a marked inhomogeneity of the generator 
medium. 

As has been shown, [2] a splitting of the sponta
neous emission line becomes noticeable at a satu
ration of y = 5. As can be seen from Fig. 2, this 
effect should appear at excitation probabilities 
several times larger than the threshold value. 

10~ 

J 
~ 
l_ 

---'--~-~·--1-z J I) 5 b 'I 

FIG. 2 

means that at large levels of excitation of the sys
tem the regions close to the nodes, where the radi
ation of the medium is small, do not play a very 
important role. The effect of a slight inhomoge
neity of the medium brought about by saturation 
(I Ll.E I « Eo) is easy to understand, since the 
steady-state emission of the generator is deter
mined by just this small part of E, and not by E0• 

4. We now consider the case when the shape of 
the luminescence line is determined not only by 
relaxation processes but also by inhomogeneous 
broadening. We shall assume that the transition 
frequencies w' are different for different atoms 
of the system and that the number distribution of 
the atoms is given by some function W( w' ). Then 
the dielectric constant will be expressed as 

"" " ,. W(w') , 
~e = - f3 ~ (w- w')2/'r2 + 1 + cr2 l E [2 dw · (25) 

Calculating the field with the aid of Eqs. (14) 
and (25) and introducing the expression so obtained 
into the boundary conditions (10), we obtain the fol
lowing equation for y = a 2A2: 

__ f f [ 1 + (w- w')2/r2 ]'/, , '} 
y - 21] \I - JX> 1 + (w _ w')•;r• + Y W (w ) dw . (26) 

By letting y go to zero, we easily obtain the gen
eration threshold in the following form: 

00 

(' W (w')dw' 
lJ .) 1 + (w- w')2/r2 = 1· (27) 

-oo 

Let us consider the case of a dispersion distri
bution of the atoms according to frequency, such 
that the mean frequency coincides with the fre
quency of the field: 

W(w') = ~ (w-w\•+r•• (28) 

The integral in Eq. (26) comes down to complete 
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elliptical integrals of the third ( y "' r ) or second 
( y = r) kind: 

u = 2"1 {1- ~_r_ 1 II 
lt fJI1+y 

x(~, -(1- ;:).y1 ~Y)}. r=i=f; 

y = 211 { 1 - ~ v /+ Y K ( ~)}, r = r. (29) 

The threshold condition for generation (27) be
comes in this case 

"1 = 1 + f/r. 
As was to be expected, the threshold increases 
with r/y. 

(30) 

An unexpected result associated with inhomo
geneous broadening is that when the threshold is 
exceeded by a given amount, the degree of satura
tion is less, the greater r ly. To illustrate this 
effect, Eqs. (29) were solved numerically,2> and 
graphs of y I 2TJ as a function of 17Y I ( y + r ) were 
constructed (Fig. 3). The quantity ryyl(y + r) 
characterizes the excitation power of the system, 
expressed in threshold units. The ratio yl2ry is 
proportional to the probability of stimulated emis
sion from an atom averaged over the length of the 
generator. It approaches unity for infinite excita
tion power. Thus, yl2ry can be thought of as the 
ratio of the mean probability for stimulated emis
sion for a given excitation power to the limiting 
probability for infinite 17· 

1.0 y/2 'I 
2 

FIG. 3 

For comparison, the graph of yl211 for a homo
geneous generator is also shown in Fig. 3 (curve 2, 
which corresponds to curve 2 in Fig. 2 ). From the 
figure it can be seen that the curves yl217 and 
TJITJthr the more gradually approach unity, the 
greater r /y. 

In order to make a quantitative estimate of this 
dependence, we make use of an approximate for
mula, which is valid for y » 1 (practically, for 
y ~ 10 ): 

2)Complete elliptic integrals of the third kind are tabulated 
in [•]. 

__!!_ = 1 _ 2 arc sin yr=ljflJ:'z 
21'] lt v 1- yy2jf2 

(31) 

From Eq. (31) it can be seen that y 1211 is a func
tion of yy2lr2 or (ylr)(ylr + 1)17117thr· Conse
quently, under these conditions it is necessary 
that the degree of exceeding the excitation thresh
old be proportional to r ly in order to attain a 
given ratio y l2ry. For example, in order to obtain 
y 1211 "' 1, it is necessary that yy 1r2 "' 1, i.e., 
17117thr "' r /y. And, if TJITJthr is of the order of 
a few units and yy lr2 « 1, then 

Y _ 1 I 1'J 
2li- ~r 1'Jthr 

(32) 

Physically this means that for r "' 0 it is neces
sary to supply considerable excitation (in thresh
old units ) to the system in order that practically 
all of it can be channelled into stimulated transi
tions instead of radiationless or emissive relaxa
tion processes. 

These rules remain qualitatively the same for 
any bell-shaped function W(w') -only the numeri
cal coefficients change, and the dependence on the 
ratio of the widths is as before. 

In conclusion, it is appropriate to comment on 
the possibility of comparing theory and experiment. 
It is possible to compare the absolute value of the 
generated flux or to measure the relative power as 
a function of 11· In the second, experimentally more 
simple variant, difficulties arise because of the 
necessity of varying the excitation over wide limits 
(of the order of 1017thr) in order to demonstrate 
the nonlinearity of the function y(ry ). In the first 
variant relatively difficult measurements of y, 
excitation power, and a number of other par am
eters ( y, r, r) are necessary, for which data on 
the damping time and the intensity and width of 
the spontaneous emission line can be utilized. The 
greatest difficulty, however, is in the determina
tion of the lifetimes of the lower levels. Indeed, 
one can think of stating the question in reverse 
-the rules described above are so sensitive to 
the ratio y 1r that they can be used to determine 
it experimentally. 
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