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The oscillations of the tunnel contact current of two normal metals separated by a thin dielec­
tric layer in a magnetic field perpendicular to the interface between the metals are investigated 
theoretically. The external cross sections of the Fermi surface and effective masses of the 
quasiparticles can be determined on the basis of this phenomenon. The amplitude of the oscillations 
is sufficiently great for small electron groups; for large groups it is very small since the prob­
ability of "tunnelling" through the potential barrier is minimum for electrons on the external 
cross sections responsible for the oscillation phenomena. Another type of oscillations due to 
oscillations of the chemical potentials of the metals can be observed in pulsed magnetic fields 
in which the pulse duration is smaller than the relaxation time of the "tunnel diode." (As a 
matter of fact only a sufficiently thin dielectric layer between the metals, say 1 1.1., is required 
in order that the tunnel current be negligible and the voltage on the plates of such a film capac­
itor oscillate). An analysis of the conditions which make it possible to observe the oscillations 
on the chemical potential of metals with the aid of the given phenomenon is performed. 

THE tunnel effect has been attracting much atten­
tion in recent years in connection with the 1investi­
gation of pn junctions in degenerate semiconduc­
tors with film structures of the metal-dielectric­
metal type (in the case of both superconducting and 
normal metals). It is assumed that an investigation 
of the volt-ampere characteristic of such a "tunnel 
diode" will make it possible to study the distribu­
tion of the density of electron states in solids. 

FIG. 1 
It has been observed that a magnetic field exerts 

an appreciable influence on the tunnel effect in 
semiconductors [l,2]. It is therefore of interest to 
investigate the possibility of appearance of a non­
monotonic (oscillating) dependence of the character­
istics of tunnel structures on the magnetic field. 

also b » ®, and b » 1.1. H. We introduce a common 
reference level for the energies of both metals, 
after which the chemical potential of the first metal 
will be denoted by b and that of the second by b 

Up to now this question was investigated only for 
semiconductors [2-4]. In the present note we pre­
sent a theoretical analysis of the oscillations of the 
tunnel current through the contact between two nor­
mal metals in a magnetic field perpendicular to 
the surface of the contact, and also oscillations in 
a pulsed magnetic field, the latter effect being of 
greatest interest. 

1. Let us consider the contact between two dif­
ferent metals I and II, separated by a layer of di­
electric 0 < z < d (Fig. 1). The levels of the chem­
ical potentials b of both metals differ by an amount 
!:::.., where !:::../e is the constant bias applied to the 
contact. We henceforth assume that b » !:::.., and 

- !:::.. • Electrons with energies E > 0 participate in 
the tunnel current. 

In calculation of the tunnel current we start 
from the formula 

(1) 

where E =En (pz) + ai.J.oH are the quantized energy 
levels of the electron in the magnetic field, a = ± 1/2 
is the projection of the electron spin, f is the Fermi 
distribution function, and D is the barrier penetra-

361 



362 I. 0. KULIK and G. A. GOGADZE 

bility coefficient (the indices 1 and 2 pertain to the 
metals I and II). 

In writing down formula (1) we start from the 
assumption that the wave functions of the electrons 
to the left and to the right of the barrier can be 
represented in the form of Bloch waves, for which 
we then seek the probability of the "tunnelling" 
through the barrier. In such an approach, we are 
not interested in the explicit satisfaction of the 
conservation laws at the junction, nor in the specu­
lar or diffuse character of the reflection or trans­
mission of the electrons. An account of these fac­
tors is important for the calculation of D 1 >. The 
calculation of the penetrability coefficient at a tun­
nel junction can be found in several papers ([s,s] 
and others ) . 

With the aid of the Poisson summation formula 
expression (1) reduces to 

(2) 

where J~ is the nonoscillating part of the current, 
equal in order of magnitude (for 0 = 0) to 

'( 

o 4nme A (' ( ) d . lz~~u .\De e, 
0 

{ V2m } D (e) ~exp -2d-fi-VW-e , (3) 

J~sc is the oscillating part of the current. The 
reason for the oscillations, as in other oscillation 
phenomena (the de Haas -van Alphen effect, the 
Shubnikov-de Haas effect) is the nonmonotonic 
(jump-like) dependence of the number of electron 
states on the magnetic field. 

Calculation of J~sc leads to the formula 

J ext 00 

Jose= 8 e2H DI g1 Re "'V 1- exp (- 2nipi'J.ff!.1H) 
z h2c li-e t.;e ;:1 p sh (2n2p8/f!.1H) 

ext 00 

D2 g, Re ~ 1 - exp (2nipi'J.ff!.,H) 
1 - et.;e P=l p sh (2n2p8/f).2H) 

[ cSm (~z)J ( m• )} 
X exp 2rtip e~h cos rtp m: , (4) 

I)For example, in pn junctions of degenerate semiconduc­
tors, the centers of the electron groups (on then-side) and 
hole. groups (on the p-side) can be located at different points 
of p-space, so that the law of conservation of the quasimomen­
tum component parallel to the surface of the tunnel diode can 
be satisfied only when the passage of the electron through the 
barrier is accompanied by emission or absorption of a phonon 
(see the work by Keldysh["]). 

where next is the value of the penetrability coef­
ficient on the extremal Fermi section; JJ. = en/m*c; 
m* = (27r)-1 asm/a~ is the effective mass of the 
electron in the magnetic field; m 0 is the mass of 
the free electrons; Sm (s) is the extremal cross 
section of the Fermi surface; 

is a dimensionless coefficient of order of unity. 
As can be seen from the expression obtained, 

each of the metals makes a contribution to the os­
cillating part of the tunnel current in the form 2 > 

[ cSm (~) J [cSm (~-1'1) J 
cos ~ - cos eHfi 

Consequently, the oscillations are determined 
not only by the extremal Fermi sections Sm ( s ) , 
but also by the sections corresponding to the energy 
E = s - .6.. Thus, with the aid of a study of the os­
cillations of the tunnel current we can investigate 
a layer of equal-energy surfaces, and not only the 
Fermi surface. Such a possibility is due to the 
presence of the parameter .6. -the bias applied to 
the tunnel diode. 

As can be seen from (4), the tunnel current os­
cillates not only as a function of 1/H, but also as a 
function of .6., the oscillation period being JJ. H in 
the latter case. Observation of similar oscillations 
makes it possible to determine directly the effec­
tive mass m* of the electron. 

The most important is the question of the ampli­
tude of the tunnel-current oscillations. To calcu­
late the amplitude we compare (4) with (3). In 
order of magnitude, we have 

f flH 8 next 2 

J~SC ~ T T l5 exp (- 2rt e I flH), 

y~ I e next 
z t T 75 exp (- 2rt2 e I 11H), 

(5) 

(D is the average value of the transmission coef­
ficient, which coincides in order of magnitude with 
nmax ~ exp (- 2d v'2m0 v'w - s jti). 

As can be seen from (5), the amplitude of the 
oscillating addition contains a small factor JJ. H/~. 

2lWhen the condition L'l » e is satisfied, the contribution 
to the oscillating part of the current is determined only by one 
of the metals [in formula (4)- by metal I], which makes it pos­
sible to separate experimentally the oscillations of the two 
metals of the contact. 
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In addition, there exists an additional decrease in 
oscillation amplitudes, connected with the fact that 
the electrons on the extremal section, responsible 
for the oscillations, have the lowest probability of 
tunnelling through the potential barrier. This makes 
it practically impossible to observe oscillations of 
large electron groups (with the exception of the 
case when the thickness of the gap is on the order 
of two or three lattice constants). Oscillations 
connected with small electron groups have suffici­
ent amplitude provided the following condition is 
satisfied 

(6) 

where d is the thickness of the gap, a0 = '5./J 2mw 
is a quantity on the order of the lattice constant, 
w is the work function, and ?; is the chemical po­
tential of the small group. 

2. We now consider the behavior of a tunnel 
diode in a pulsed magnetic field. As shown by 
Kosevich [T] oscillations in pulsed fields can be 
regarded in the same fashion as in the static case, 
provided the following conditions are satisfied 

(7) 

where wH is the cyclotron frequency, T the dura­
tion of the magnetic-field pulse, o =-./ c2T/a the 
characteristic dimension of the inhomogeneity of the 
magnetic field inside the specimen, A. the de Broglie 
wavelength of the electron, L the length of the speci· 
men, and r the radius of the electron orbit (it is 
assumed that the magnetic field H is parallel to the 
surface). When inequality (7) is satisfied, the con­
ditions for quasiclassical quantization have the 
same form as in the static case. 

However, the pulsed character of the field 
changes utterly the physical picture of the tunnel­
current oscillations. Indeed, in the static case one 
could neglect the oscillations of the chemical po­
tential of the metals. But if the magnetic field 
changes rapidly during a time too short to permit 
establishment of equilibrium current, then ?; osc is 
contained directly in the expression for the voltage 
between the metals producing the contact. Conse­
quently, observation of the tunnel effect in pulsed 
magnetic fields whose duration T satisfies the con­
dition T ,.$ T, where T is the relaxation time of the 
tunnel diode (that is, the time during which the 
charge imparted to one of the electrodes diffuses 
away), enables us to observe directly the oscilla­
tions of the chemical potential of metals. 3 ' 

3'The possibility of experimental observation of oscilla­
tions of the chemical potential of a metal in the static case 
was investigated by Kaganov, I. Lifshitz, and Sinel'nikovJ8 ] 

As was shown by I. Lifshitz and Kosevich [ 9], 

the order of magnitude of the chemical-potential 
oscillations is 

:n: {f.tfi)t/2 
~;osc_ V"2 e , T exp (- 2n2 e 1 flH). (8) 

For e = 10° K and H = 104 Oe this estimate yields 
for small groups ?;osc ~ 10-3 -10-4 eV; for large 
groups the amplitude of the oscillations is smaller, 
on the order of 10-6 eV. If T << T, the amplitude of 
the alternating voltage on the electrodes of the 
"capacitor" produced by the two metals is yosc 
= ( s?sc - ?;~sc )/ e (in the absence of an external 
constant bias D.), and consequently, can be readily 
measured. 

It is easy to find the amplitude of the oscillations 
even when the ratio of T and T is arbitrary. As­
suming the oscillation to be sinusoidal with fre­
quency w, we obtain 

vosc= r;,osc;e 
1 + ifwr: 

(see the equivalent circuit on Fig. 2). 

(9) 

The relaxation time of the tunnel diode T can be 
found as T = RC, where R is the contact resistance 
and C the contact capacitance (Fig. 2): 

(10) 

( S is the contact area, E is the dielectric constant 
of the gap material, n is the conduction-electron 
concentration, and VF the Fermi velocity). 

Putting VF ~ 108 em/sec, n ~ 1022 cm-3, and 
S ~ 1 cm2, we get 

e 1Q-15 
-r ~ 2n · - 75 sec. 

When i5 ,_ 10-12 (this is already the value of the 
penetrability coefficient for a gap thickness several 
times the lattice constant) we obtain T ~ 10-J sec, 
that is, the same order as the duration of the mag­
netic -field pulses in apparatus in which large mag­
netic fields are produced. The condition T ,.s RC 
can always be readily satisfied by increasing the 
gap thickness d; then RC - co 4 l. 

Thus, it is possible to observe in pulsed mag­
netic fields oscillations of a new type (differing 
from those considered in Sec. 1), connected with 

4> Actually an increase of R to infinity does not lead to 
T -> oo , since the tunnel diode is loaded by the measuring 
equipment, which has a certain shunting resistance Rsh (see 
Fig. 2). Assuming Rsh - 1 Mil, we find that in order to obtain 
a relaxation time on the order of 10-3 sec we must have 
C z 103 pF. Consequently, the thickness of the gap must not 
exceed -111, if e .,. 1(at such thicknesses the tunnel current 
is already negligibly small in fact). 
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FIG. 2 

the oscillations of the chemical potential of the 
metals. Experimental observation of this phenom­
enon is facilitated by the fact that (a) it is very easy 
to obtain very large pulsed magnetic fields (on the 
order of several hundred kOe ); (b) the amplitude 
of the oscillations is relatively large; (c) a contact 
in which one of the metals is a single crystal can 
be readily prepared; (d) the mean free path does 
not exert an appreciable influence on the given ef­
fect, since s is a macroscopic characteristic of the 
metal. This makes it possible to observe oscilla­
tions of the chemical potential at relatively high 
temperatures. 

Along with the foregoing advantages of this phe­
nomenon, there are many difficulties, one of which 
is the problem of compensating for the induction 
from the alternating magnetic field, which is more 
significant for metals with large electron groups, 
in which the amplitude of the effect is smaller. It 

is obvious that it is best to carry out the experi­
ments with "poor" metals such as bismuth, which 
have a small number of carriers and poor conduc­
tivity [for which it is also easiest to satisfy the 
quasi-static condition (7)]. 

In conclusion, the authors thank I. M. Lifshitz 
for a discussion of the work. 
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