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The relation between the Newtonian equations of motion and the harmonic coordinate condi­
tions in Einstein's theory of gravitation is investigated. It is proved that if the metric tensor 
can be represented as a power series, then zero-order harmonic coordinate conditions must 
be applied in order to deduce the Newtonian equations of motion. It is also proved that in the 
Infeld method for deducing the Newtonian equations of motion from the gravitational field 
equations coordinate conditions are employed which not only contain zero order harmonic 
conditions but are even stronger than these conditions. 

1. INTRODUCTION 

INFELD [l] has used a model for the sources of a 
gravitational field in conjunction with several other 
assumptions to deduce from the gravitational field 
equations both the Newtonian and the post-Newto­
nian equations of motion of particles. He gave a 
simple and condensed derivation of the equations 
of motion that had previously been derived by Ein­
stein, Infeld, and Hoffman. [2- 4] 

The Newtonian equations of motion have also 
been derived by Fock, [S] using a different model of 
the gravitational field. In a continuation of Fock's 
work the post-Newtonian equations have been de­
rived by PetrovaC6J and Papapetrou. C7J The har­
monic coordinate conditions have an essential role 
in the method of Fock, who declared that they are 
necessary for deriving the equations of motion. 
Infeld states, on the contrary, that neither the har­
monic conditions nor any other coordinate condi­
tions are involved in deriving the equations of 
motion. 

It is shown in the present paper that zero-order 
harmonic conditions are necessary and sufficient 
for deriving the Newtonian equations of motion of 
particles from the gravitational field equations. 
It is also shown that in Infeld's method of deriving 
the Newtonian equations coordinate conditions 
stronger than the zero-order harmonic conditions 
are assumed. 

In a paper being prepared for publication 
Wojewoda has proved that harmonic conditions of 
zero, first, and second orders are necessary and 
sufficient for deriving the post-Newtonian equations 
of motion of particles. 

2. POSTULATES OF INFELD'S METHOD 

In Infeld's method the symmetric tensor gJ.t" 
characterizing the gravitational field and the co­
ordinates xa. are related by 

(1) 

where 

Jl!l = ct (2) 

with Greek indices running over 0, 1, 2, 3 and with 
repeated indices being summed from 0 to 3. To 
distinguish the time coordinate we assume Hilbert's 
conditions 

goo go1 go2 

glO gll g12 > Q, 

g20g~l g22 

The metric tensor gJ.t" is determined from the 
gravitational equation 

Ra.13 - + Rga.il = -8nT"13 , 

(3) 

(4) 

where Ra.f3 is the second-rank curvature tensor, 
R is the curvature invariant, and ~{3 is the mass 
tensor. 

In Infeld's papers particles are regarded as 
singularities of the field. The coordinates of the 
A-th singularity are denoted by ~~· These coor­
dinates are functions of an orbitrary parameter A.. 
For each singularity a "proper time" is introduced: 

dsA = ~ {) (x~'-- ~'A) (ga.!ld~~d6~ )'1'd'x, (5) 
oA. 
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where integration is performed over small four­
dimensional regions surrounding the singularities. 
The "good" four-dimensional function o(xf.l.-~f.l.) 
possesses all the properties of Dirac's o function 
plus the property that the function 

f (;~'-) = \ 6 (x~'-- ;~'-) f (x~'-) d4x 
~ 

is non-singular even when f(xf.l.) possesses singu­
larities of the type r-P, p = 1, 2, .... 

The first postulate of Infeld' s method consists 
in assuming a mass tensor of the form 

V - B ~ ~ a d~A d~~ - g T"" = C-2 k .L.Jf.tAO (X"- ;A)~ dSdsA. 
A A A 

(I) 

According to the second postulate, the metric ten­
sor can be expanded in a power series: 

ga.B = g~oJ + c-lg~lJ + C-2g~2J + c-ag~aJ + . . . (II) 

According to the third postulate the quantities 

a<Diat, (III) 

are of zero order if 4> is of zero order. The fourth 
postulate gives the behavior of the metric tensor at 
infinity: 

lim (g v -TJ J =lim (Mir), (IV) 
r --+m 1-1.. J..L r -KX:J 

where M is a constant and 

lJoo = I' l]om = 0 

with Latin indices running over 1, 2, 3 and with 
repeated indices being summed from 1 to 3. The 
second equation of IV insures the Newtonian char­
acter of the solutions of the field equations; this is 
also among the postulates of Infeld's method. Ac­
cording to the fifth and last postulate we have 

We shall show that these relations do not follow 
from the correspondence principle. 

It follows from the field equations (4) that 

(V) 

(6) 

where '\1 a is the covariant derivative with the 
metric tensor gf.i.V' Substituting (I) in (6), we obtain 

(7) 

Solving the field equations (4) in conjunction with 
the postulates (I)-(V), the Newtonian equations of 
motion are derived uniquely from (7). 

3. EXACT STATEMENT OF THE PROBLEM 

In Fock's method the functions g~v character­
izing the gravitational field are related to the co-

ordinates x*a by 

ds2 = g* dx*~'-dx*v 
p.v ' 

where 

From (1), (2), (8), and (9) we obtain 

The coordinates x*O! are harmonic when 

ra. = - V- g• a(JI g'g'a.ll) 1 ax~' = o. 

The substitution of (10) in (11) gives 

ro = - y=g [c-2a <v=i g0°) I at 

+c-1a <v=i gOm) 1 axmJ = o, 
rn = - Y g rc-la <V g gOn) 1 at 

+ a <JI=i gnm) 1 axm 1 = o. 

Hence for the zeroth approximation we obtain 

a <Y g(o)g(o)mn I axn = 0. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(A) 

When the harmonic conditions are written in 
finite form the choice of variables is not significant. 
To estimate the degree of smallness of the harmonic 
conditions we must use "natural" coordinates which 
are defined without c. 

We know that Newton's equations for N particles 
are 

(14) 

where 
F'A=-

The constants J.l.A denote the masses of the par­
ticles and k is the gravitational constant. 

It is our task to prove the following theorems: 
(a) To derive the equations of motion (14) from 

the field equations (4) assuming (I)-(IV), the zero­
order harmonic conditions (A) are necessary and 
sufficient. 

(b) The conditions (V) are stronger than the 
zero-order harmonic conditions (A) and are not 
necessary for deriving the equations of motio~ (14) 
from the field equations (4) on the basis of the pos­
tulates (I)- (IV). 

4. PROOF OF THEOREM (a) 

To prove theorem (a) we must obtain the most 
general functions g<O> g0 > and g< 2> satisfying the af3• oa • oo 
field equations (4) and the postulates (I)-(IV). We 
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know that by means of the transformations (29) 

' a# ax• 
ga.{l = ax' a. ax'fl gtJ.V (15) is positive definite. Expanding (28) and consider­

ing the second equation in (23), we obtain 
it is always possible to fulfill the conditions 

a (lf g ga.ll) I oxfl = 0. (16) 

Thus the most general solutions of (4) assuming 
(I)- (IV) are obtained by means of (15) from the 
most general solutions of (4) assuming (I)-(IV) 
and (16). We introduce the notation 

fmn = Dmfn -Dnfm, (17) 

where Dm is the coordinate derivative with the 
metric tensor 'Ymn· In this notation the field equa­
tions (4) give in the zeroth approximation 

(18) 

(19) 

(30) 

The general solution of these equations satisfying 
the conditions (IV) at infinity has the form (Chap­
ter 2 of [BJ) 

fm = 0. (31) 

From (27) and (31) we obtain 

Pmn = 0. (32) 

We knowC9J that these equations are necessary and 
sufficient conditions for the Euclidean character of 
three-dimensional space; we thus have 

(33) 

The substitution of (33) in (23) gives 

(34) 

where 

(20) Considering the conditions (IV) at infinity, we ob­
tain from (34) 

utt = e-t<l> (+ rklrsjrab-+ rk•rab/i) [ka{sb. (21) 

Qli = (2yalybf _ Yablf) DaQ>D6C1> (22) 

and Pmn is the second-rank curvature tensor cor­
responding to the tensor 'Ymn and P is the curva­
ture invariant. 

For (16) in zeroth order we obtain 

a (Yr ymn) I axm = 0, 

where 

a cVifm) I axm = 0, (23) 

y = det (Ymn). 

It follows from (13) and (17) that the form 

dl2 = Ymndxmdx 11 (24) 

is positive definite. Then 

(25) 

Since the equations (19) are elliptic, it follows from 
(25) and the conditions (IV) at infinity that 

ID = 0. (26) 

Equations (18) and (19) now assume the simpler 
forms 

P,, = +rabfai fbi• 

Dtf'' = 0. 

Equations (25) and (27) show that the form 

(27) 

(28) 

Ymn = l!Jmn• (35) 

The final solution of (4) and (16) in zeroth order 
is 

(36) 

In first and second approximations (4) and (16) 
give 

(37) 

{>mn (J2g(2) 00 I axm axn = - Bn ~ kJ.t A{> (xi- £~) . (38) 
A 

The general solutions of these equations satisfying 
the conditions (IV) at infinity are 

g<t)on = 0, g(2) 00 = - <p, (39) 

where 

<p = - 2k ~ J.t A I I £::: - xm I . (40) 
A 

Collecting the results with the requisite accuracy, 
we have 

g00 = 1 +c-2 <p +0 (c-3), 

gon = 0 (c-2), 

gmn = - f>mn + 0 (c-1). (41) 

With the proper change of notation, from (15) 
and (41) we obtain the most general solutions of 
(4) subject to (I)-(IV): 
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as<l>o ( as<2>n as<uo as<1>o 
goo = I + 2c 1 -at + c-2 <p + 2 -- -L- --- --dt : dt iJt 

os<o>m os<o)n ) 
- (j mn -d-1 - -----af ' 

as(J)O aS(l)O iJS(Il)a iJS(o)b 
gmn =-am ~- bab ---;rn-a n · 

X uX uX X 

The substitution of (42) in (7) gives in the first 
nonvanishing approximation 

(42) 

d2£,A Am d£,~ d£~ m d£~ m ( [ii2+ Ali([fdi+NAt([f+PA~O, 43) 

where 

Mi = +rks (arts I axi +a'!' is I ax'- arlj /ax'), 

Nks = 2bmn (as<o)m I axk) (d2S(o)n I ax' at), 

pk = bmn (aS(O)m I axk) ws(o)n I at2) + +a<p I ax" (44) 

and 

We shall first prove that the condition (A) is 
sufficient. The substitution of (42) in (A) gives 

From (46) in conjunction with (IV) we obtain 

s<o)m = c'/:x" + vmt +em, 

where cffl, vm, and Em are constants and 

From (44) and (45) we obtain 

(46) 

(47) 

Yab=bab• A~n=O, Nmn=O, P,=+arp/ax'. 

Thus (43) gives the Newtonian equations of motion. 
To prove the necessity of (A) we note that (43) 

has definite solutions for arbitrary initial condi­
tions regarding ~ ~ and d~ ~ /dt; we can therefore 
consider these quantities as arbitrary. The second 
derivatives d2~~/dt2 are by definition related 
through (14). Multiplying (14) by Lagrangian mul­
tipliers and adding it to (43), we obtain 

+ ( F~ A-~4k - PA.) = 0 . (48) 

By equating the coefficients of d~~/dt and d2~~/dt2 

to zero and taking (IV) into account, we have 

S(O) m = C'/:Xk + V 111f + e111 , "(11; = {jlis· (49) 

It follows from (49) that (A) is fulfilled. 

5. PROOF OF THEOREM (b) AND CONCLUDING 
REMARKS 

In Infeld's method the condition (A) is replaced 
by (V). When (V) is fulfilled, then (A) is also ful­
filled. The converse is not true: from (A) it fol­
lows, as has been shown, that 

as<l>o 
g(O)- --­
on- ax" ' 

as<no asll )n 
g (o) - - bm + ---- --

mn -- n axm axn , 

which denotes that (V) is not fulfilled. Thus (V) 
not only contains the zero-order harmonic condi­
tions but is stronger than the latter. Therefore it 
also follows that (V) is not necessary for deriving 
the Newtonian equations of motion. 

The correspondence principle requires that (43) 
should coincide with (14) for large c. Since (43) is 
independent of c, the proof of theorem (a) is also 
a proof that the zero-order harmonic conditions 
follows from the correspondence principle. 

It follows from (15) that in conjunction with the 
postulates (I)- (IV) the harmonic conditions (A) de­
termine the coordinate system accurately up to 
Galilean transformations. This accounts for the 
fact that the coordinate conditions (A) are suffi­
cient for deriving the Newtonian equations of 
motion. [10] 

The same question has also been considered by 
Meister and Papapetrou, [ii] who arrived at the op­
posite conclusion that the Newtonian equations of 
motion do not depend on the zero-order harmonic 
conditions. However, the fulfillment of (V) was 
assumed in the proof of this conclusion. Yet, as 
we have seen, the latter not only contains, but is 
stronger than, the zero-order harmonic conditions. 
In [i1J it was essentially only proved that the New­
tonian equations of motion do not depend on har­
monic conditions of higher than the zero order. 

All the foregoing considerations indicate that 
the harmonic coordinate system has a very impor­
tant role in the deduction of the equations of motion 
of particles from the gravitational field equations. 

In conclusion I wish to thank Academician V. A. 
Fock for valuable discussions. 
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