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Relaxation of plasma electrons and of the photons emitted by them as a result of radiative 
processes in a strong magnetic field have been studied. The time variation of the photon dis
tribution function and the mean transverse electron energy E 1 ( t) have been derived in the 
relativistic case. During the photon relaxation timeT~ WHIT"2.J Tjmc2 (0 is the plasma 
frequency and w H the Larmor frequency) the mean transverse electron energy practically 
reaches its stationary value EJ. ( T) s::J E 1 ( oo), whereas the photon distribution function ap
proaches a Rayleigh-Jeans distribution with a temperature T = E 1 (co) in the frequency range 
!::.. = w H .J T jmc2 about the frequency w H. For periods t > T, the electron relaxation proceeds 
(with a constant mean transverse energy) toward a Maxwellian distribution. 

l. It has been shown previously[1• 2J that the where ft is a matrix in the space of polarization 
process of radiation and absorption of electromag- indices ;>.. with matrix elements 
netic waves by plasma electrons in a strong mag
netic field can exhibit a significant effect on the 
relaxation of electrons and transport phenomena 
in a plasma. However, the problem of the relaxa
tion of the photon distribution function has scarcely 
been considered in these researches. It has only 
been established that the photon distribution func
tion tends toward the electron distribution in a 
time which is much shorter than the relaxation 
time of the electrons. 

The present research is devoted to a detailed 
study of the relaxation of photons and electrons in 
the nonrelativistic case under the assumption that 
radiative precesses play a much more important 
role than Coulomb collisions. 

2. As was shown in [3], the kinetic equations 
for the homogeneous case can be written for the 
electron distribution function f and the photon 
density matrix N;>..;>..' in the form 

Rxx· (lk; 2) = (2n/!i) W~ (lk; 2) w~.- (lk; 2) (2) 

and +;>.. ( lk; 2) is the probability amplitude for 
transition of the electron from state 2 (with quan
tum numbers n2, p2z, which define the transverse 
electron energy E1 = tlw H ( n + Y2 ) and the longi
tudinal momentum of the electron relative to the 
magnetic field H) to the state 1 (with quantum 
numbers n 1, Ptz) with emission of a photon with 
wave vector k and polarization ;>... In Eq. (1), the 
trace is taken in the space of the polarization 
indices "A. 

In the classical approximation, the quantity ft 
has the form 

I 

X j ,1 (Plz + fikz- P2z) 11 (Ply + fiky -P2y), (3) 

e ( rop J. . ) 
Bz = m Pzlisl liH sm 'fr .• (3') 

afJ 1 ~ , , , 
7ii = 2 LJ {(1 - {1) { 2 (1 + N)- { 1 (1 - { 2) N} R (lk; 2) In these formulas V is the normalized volume, fP, 

12 J. the azimuthal and polar angles of the wave vec-

x 1\ (e1 + !iw _ 82) + + ~ R. (1k; 2) {(1 _ {1) f2 ( 1 + N) tor k relative to the magnetic field, and s = n2 

12 - nt. 

( 1) 
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It is easy to prove that in the nonrelativistic 
case, for w "'w H• 
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0 B ep 1_ J- cos{}, 
ek~c = ---zm l i, 

A-=1 

A.= 2, s = 1 ' 

where e~ 1 is the unit polarization vector lying in 

the plane of the vectors k and H, while e0 is the k2 
unit polarization vector orthogonal to this plane. 

In what follows it will be convenient to use the 
polarization vectors ekA, which are connected with 
the linear polarization vectors e~A by the relations 

(4) 

ek2 = (e~1 - i cos{} e~ 2) (1 + cos2 {})-'/,_ 

These polarization vectors correspond to an 
elliptically polarized wave and possess the prop
erty that for them 

(5) 

~d consequently, in accord with (3), the operator 
R is reduced to diagonal form: 

(6) 

This formula refers to the case s = n2 - n1 = 1 . In 
the nonrelativistic case, RAA' is of the same scale, 
for s = - 1, as in ( 6), we do not need the corre
sponding expression in what follows. 

We represent the kinetic equation for the photon 
distribution function N?.A' in the following form: 

a.N;at = - f.lr _ r+.N + v; (7) 

f = + ~ {fl- f2) R (1k; 2) t\ (81 + nw - E2), 
12 

v = L: f2 (1 - fl) R. (1k; 2) 0 (el + nw- 82), (7') 
12 

h + - * w ere rAA' = r A'A is the Hermitian conjugate to 
r. 

3. In the classical approximation, the electron 
radiation collision integral can, in accord with [t,3], 

be written in the form 

f (r) - _1 _ __ a_ ·(r) + a ·(r). 
- Pj_ apl_ Pl_]j_ apz ]z' 

·(r) V S \ dk w ( e ) { llw ' 
]1_ = (2n)3 P~ cpl_ c-PzCos'fr f+cN 

X r:f cos{} + ....!_ ( ~ - Pz cos{}\_§]__]} 
Pz P ..L C } ap ..L 

x ~ R. (p', k; p) o (e' +nw- e), 

(8) 

.(r) v s sdk 
}z = (2n)3 P kz 

X {t + li: N r aat cos{} +-1- (!:...- Pz cos{})~]} 
L Pz P ..L c , ap ..L 

X ~, R (p', k; p) o (e' + nw - e). (9) 

n'PzPy 

In the nonrelativistic case, as is seen from these 
formulas, j~r) « jlr), and consequently, 

f (r) __ 1 _ __ a_ ·(r) ( 8') 
- P ..L ap ..L P..Ll..L • 

The current jlr), in the nonrelativistic case, in ac
cord with Eqs. (6), (9), can be written in the form 

·(r) _ P ..L {f r at } . 
l..L - 2-r~r) +., (t) ae..L ' ( 10) 

where N 11 ( Pz; J., cp) N 11 is the value of the func
tion N 11 ( k) for 

w = wH = wH/(1 - (p,!mc) cos ft)). 

4. We now proceed to find the values of v and 
r in the classical nonrelativistic approximation. 

In carrying out summation over n2 in Eqs. (7'), 
we can restrict ourselves in the nonrelativistic 
case, in accord with (3) and (3'), just to the terms 
with n2 = n1 ± 1. However, since we are considering 
photon frequencies close to w H• the principal role 
in the nonrelativistic case ( T << mc2) is played by 
the component with n2 = n 1 + 1 ( s = 1), owing to 
the presence in Eqs. ( 7 ') of the functions 
o+(Et+l'iw -E2),o(Et+l'iw-E2). Moreover, 
keeping in mind that, in the classical approximation, 

f f m i:Jf 
~- 2 = -nwu- -a-, 

P1_ P1_ 

we get, in accord with (7') and (6), 

Introducing the notation 

(11) 

we transform these formulas to the form 
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-
v = ~ R e r r ~ 1 + cos" {} ( 1 _)_ i£) 

liw H ' 2t I cos {} I ' ' 

~ = ± :n:P \ t:Pl_ I \ /lJ (Pz - Ptz) dp1. ( 12) J fl z fl1z .: 

In the latter formula the plus sign corresponds to 
the value of cos J > 0, while the minus sign corre
sponds to cos J < 0. 

Using Eqs. (12), we transform Eq. (7) for the 
photon distribution function to the form 

aNn 
----at ( 13) 

aN12 _ r'N ------at - - 1 ~ ' 
aN21 r ------at = - N 21, aN2,_- o ( 14) at - · 

From the latter formula ( 14) it is evident that 
photons with the polarization ek2 do not generally 
take part in radiative processes. 

5. We consider the relaxation of the skew com
ponents Nt2 and N21 of the density matrix Nt.A.' . 
For this purpose, we note that, in accordance with 
(1) and (8'), 

a \ f d \ 1 a ·(r)d 0 Tt ~ 1 P_1_ =.) P l_ ap l_ Pl_]l_ P_L = 

and, consequently, the quantity r does not depend 
on the time. 

Integration of Eq. (14) yields 

N 21 (t) = N 21 (0) e-rt, N 12 (t) = N;1 (t). ( 15) 

If we assume that there is initially a Maxwellian 
distribution with temperature T11 in the longitudinal 
momentum of the electrons, then we get the follow
ing for the quantities 1/T, ~, in accord with ( 11), 

( 12)' 

1 "I /n Q2 -. /"mc2 . ( P; ) 
T"" = J' 8 wH V r;- exp - 2mT 

11 
' 

~'z/V 2mrll 

~ = 2Yn ~ eu'du. Q2 = 4nne2 , 

m 
( 16) 

Thus the values of N 12, N 21, which oscillate with 
the frequency ...- ~ /T, are damped out in a time of 
the order of T. 

6. We turn to a consideration of the relaxation 
of N11 • The unknown quantity /;, associated with 
the electron distribution function, appears in Eq. 
( 13), which determines the change of N 11 with 
time. 

The electron distribution function f, in accord
ance with (8'), (10), satisfies the equation 

at 1 a { at } ar = ·'-:::fi) ae- e l_ f + \; ae ' 
'e l_ l_ 

(17) 

where the quantity !; , by ( 1 0'), does not depend on 
E 1 . It is easy to get 

:, ~dp1_e1_f =- t~r) ~dp_1_ (e_1_- \;) f, 

:, ~ dp l_f = 0. 

from Eq. ( 17). Making use of the definition ( 11) of 
the quantity E" 1, we then find 

de1_!dt = - (e_1_- \;)h'~r>. (18) 

Equations (13) and (18), together with the defi
nition ( 10') of the quantity r, make up the complete 
set of equations for the analysis of the relaxation 
of N 11 : 

. 1 _L x2 { e, } N X -- - -'- N X - -·-_ 
11 ( ) - t I x I 11 ( ) liw H ' 

where x = cos J and 

Solving the second equation of ( 19) with the 
initial condition N 11 ( x) lt=O = N~~l ( x), we get 

( 1 + x2 ) N 11 (x, t) = exp - TTXf t 
t 

( 19) 

X {N~l (x) + \.txx: li~H ~ B_L (t') exp (\txxl• t') dt'} .(20) 

Substituting (20) in the first equation of ( 19), we 
finally get the following equation for €1 : 

t 

e _1_ +-k e _1_ = g 0 (t) + ~ g (t - t') e _1_ (t') dt'; (21) 
't'e () 

1 

( 3 !iw H (" 2 ( 1 + x2 ) o go t) = 8 7'1 J (1 + x) exp - -:rrxT t N11 (x) dx, 
e -1 

1 

3 ~ ( 1 _L x")2 ( 1 ' x2 ) g (t) = -- ' exp - _::r::___ t dx. 
4-rt(r) X tX 

(21') 
e o 

By finding in (21) the mean transverse energy of 
the electron E"1 in the same way as with (20), we 
solve the problem of the relaxation of N 11 . 

We use the Laplace transform method in Eq. 
( 21). Introducing 

co 

f (p) = ~ e-P1e _1_ (t) dt, 
0 

we find 

(22) 

pf(p) - e l_ (0) + f(p)h'~r) = go (p) + g (p) f (p), (23) 

where 
co 00 

go (p) = ~ e-rtg0 (f) dt, g (p) = ~ e-rtg (t) dt (22') 
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and €1 ( 0) is the initial mean transverse energy 
of the electron. 

From Eq. (23), we find 

f (p) = [ej_ (0) +go (p)]![p + ll'r~r) -g (p)J. (23') 

From (22'), (21'), the quantities g0 (p) and 
g(p) are equal to 

(24) 

Therefore, Eq. (23') can be rewritten in the form 

T~r) 1 E j_ (0) +go (p) 
f (p) = -T- p F (Tp) ' (25) 

F(z)= -rr> +-~-J x(i+x2) dx. (26) 
T 4 J 1+x2+zx 

0 

It follows from Eq. (26) that F ( z) is an analytic 
function in the complex plane z, the only singular
ity of which is the line cut z :s -2. We emphasize 
that the function F ( z) has no zeroes in the entire 
complex plane of the variable z. The function 
g0 ( p), in accord with (24), is also an analytic 
function of z == pT with the cut z :s - 2, and, ex
cept for this, has no singularities in the z plane. 
Therefore, using the inversion formula 

a+ioo 

e1_ (t) = 2~i ~ ePif(p) dp, (j > 0, (27) 
a-ioo 

and (25), one can transform the contour of integra
tion to the form shown in the drawing. 

Since 

~ eP1f (p) dp--+ 0 fort- oo, 
c, 

then the limiting value of the mean transverse 
electron energy is equal to 

- ( ) - _1_ ,{:, plf ( ) d - T~r) E j_ (0) +go (p) IP=O 
8 j_ 00 - 2:rti 'j' e p p - T F (0) • 

c, 

From Eqs. (26), (24), we find 
T(r) 

F(O)= ++f, 
1 

go (p) !p~oo = + liwH ~ \ [X/ N~1 (x) dx. 
Tz ~1 

(28) 

Consequently, we get the following expression for 
the value of €1 ( 00 ) - €1 ( 0), which represents the 
increase in the mean transverse energy of the 

electron due to transfer of energy from the photon 
reservoir to the electron: 

8 1_ ( oo) - 8 1_ (0) 

=[liwH ~ tx[N~I(x)dx-8_!_(0)]/[i+f -r:>J. 
~ (2~ 

Thus, depending on the sign of the quantity in the 
numerator of the right hand side of (29), the energy 
flows from the photon reservoir to the electron 
reservoir (positive sign) or from the electron 
reservoir to the photon reservoir (negative sign). 

Equations (27) and (28) show that one can put 
the quantity € 1 ( t) in the form 

e_!_(t) = Bj_(oo)+zi·(' ePif(p)dp. 
:rtl .\ 

c, 

By denoting the value of the function f ( p) on the 
upper side of the cut by f+ ( p), and noting that the 
value of f ( p) on the lower side of the cut L ( p) 
== f+ ( p) *, we get 

-2/"': 

e1_ (t)- '81_ (oo) = - __!__ (' dpeP1 Im f+ (p). (30) 
:rt .\ 

+ 

c, 2 -or 

-00 

The function F ( z) on the upper side of the cut 
is, from (26), equal to 

T(r) 3 3 3 
F (z) = -'- + - -- z + - z2 In I z + 2 J + T 8 4 8 

+~z 2-z2 lnl z+Yi2=41 
8 "Vz2-4 2 

z<-2. (31) 

If we limit ourselves to a consideration of the iso
tropic initial photon distribution, then the value of 
g0 ( p) on the upper boundary of the cut is, accord
ing to (24), equal to 

go+(P) = liwH (-r!Tr>) M1 (F+ (z) - -rr>/T) 

and, consequently, Eq. (30) takes the form 

(31') 



RELAXATION OF PHOTONS AND PLASMA ELECTRONS 501 

e_1_ (t)- 8_1_ (oo) 

(32) 

Since T ::;; T~r), then there is sense in consider
ing an asymptotic value for this expression when 
t » T. In this case, since the values of p f::l - 2/T 
play a fundamental role in the integral (32), it is 
necessary to know only the asymptotic value of 
F + ( z) for z ~- 2, which, according to (31) has the 
form 

F+ (z) = -r~'>;-r-~-ni/Vz2 - 4. 

Substituting this asymptotic expression for the 
function F+ ( z) in Eq. (32) and carrying out simple 
transformations, we finally obtain 

e j_ (t) - e j_ ( 00) = n-1cr2 (8 j_ (0) - nw HN~l) e-2l/< 

• 
X { cVn72cr) (-r/t)'/,- ~:rte1"'1< [1- <1> (a Vt/-r)l}' 

(33) 

where a= 3'1l"T /4T~r) and ~ ( y) is the error func-
tion: 

y 

Q> (y) = /it~ e-l'dt. 
0 

It is evident from Eq. (33) that even for t f::l T, 

e_1_(-r)- e_1_(oo) = 't'Ej_(O)/-rt> < 8_1_(0), 

as was demonstrated in [ 1]. 

Finally, we note that one must identify the 
quantity € 1 ( 00 ) with the transverse temperature of 
the plasma electrons, which is established for t 
» T~r) (see [ 1]): 

(34) 

In conclusion, the author expresses his thanks 
to A. I. Akhiezer, V. F. Ale skin and V. G. Bar'
yakhtar for useful discussions. 
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