NEUTRON POLARIZATION IN THE D(d, n) He³ REACTION

I. S. TROSTIN and V. A. SMOTRYAEV

Institute of Theoretical and Experimental Physics

Submitted to JETP editor November 12, 1962

J. Exptl. Theoret. Phys. (U.S.S.R.) 44, 1160-1161 (April, 1963)

Values of the polarization of neutrons emitted at various angles θ_n from a deuterium target for deuteron energies E_d = 12.0 \pm 0.6 MeV and E_d = 9.0 \pm 0.7 MeV have been obtained with the aid of a helium analyzer and by employing the Seagrave phase shifts for $n\alpha$ scattering.

 $M_{\text{EASUREMENTS}}$ of the polarization of neutrons from the $D(d, n)He^3$ reaction have been carried out by many authors [1-6] using various methods. In their work discrepancies are observed in the behavior of the maximum value of the neutron polarization P_n as a function of the deuteron energy E_d (see the figure). The angle dependence of the polarization has been measured only up to a deuteron energy $E_d = 8.9$ MeV. It would be interesting to supplement the available experimental data on the polarization of neutrons in the $D(d, n)He^3$ reaction for deuteron energies $E_d = 9-12$ MeV.

The measurements of the neutron polarization were carried out with the extracted beam of the cyclotron of the Institute of Theoretical and Experimental Physics with 12.3 ± 0.3 MeV deuterons. The azimuthal asymmetry of the neutron scattering was measured with a helium analyzer. $\lfloor 7 \rfloor$ A deuterium-saturated 19-mg/cm² thick zirconium target was used.

The following values of the polarization of neutrons emitted at various angles θ_n from the deuterium target were obtained for two deuteron energies (Seagrave's $n\alpha$ -scattering phases were used [8]:

$E_d =$	$= 12.0 \pm 0.6$	5 MeV

θ, (1.s.), deg:	20	30	40	50
E_n , MeV:	14.0	13.1	11.9	10,5
$P_{n}^{''}, \%$:	2.2 ± 1.1	18.5 ± 2.3	10.8 ± 3.3	-2.2 ± 3.7

$$E_d = 9.0 \pm 0.7 \text{ MeV}$$

θ_n (1.s.), deg:	20	30	40
E_n , MeV:	11.4	10,7	9.8
$P_n, \%$:	-1.6 ± 1.0	1.6 ± 3.4	10.1±3.9

The positive direction was taken throughout to be along the normal $\mathbf{k}_d \times \mathbf{k}_n$.

The maximum values of the neutron polarization obtained from our data are indicated in the figure.

The authors express their gratitude to the cy-

clotron crew of the Institute of Theoretical and Experimental Physics, and also to I. K. Malyutin and V. S. Repin for their help with the measurements.

¹ P. J. Pasma, Nucl. Phys. 6, 141 (1958).

² Meier, Scherrer, and Trumpy, Helv Phys. Acta 27, 577 (1954).

³ Levintov, Miller, Tarumov, and Shamshev, Nucl. Phys. 3, 237 (1957).

⁴ J. A. Baicker and K. W. Jones, Nucl. Phys. 17, 429 (1960).

⁵W. W. Daehnick, Phys. Rev. **115**, 1008 (1959).

⁶ P. S. Dubbeldam and R. L. Walter, Nucl. Phys. 28, 414 (1961).

⁷ Trostin, Smotryaev, and Leventov, JETP 41, 725 (1961), Soviet Phys. JETP 14, 524 (1962).

⁸J. D. Seagrave, Phys. Rev. **92**, 1222 (1953).

Translated by Z. Barnea 191

784