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Analytic expressions are obtained for upper limits of the coupling constant for three fields 
a, b, and c as a function of the particle masses rna, mb, and me. 

l. The coupling constant g2 of three fields a, b, c 
satisfies, as shown by Lehmann, Symanzik, and 
Zimmermann, [1] the inequality g2<I> (a) < 1, where 
<I> (a) is a certain functional of particle a. From 
here follows the inequality g2 < 1/ <I>min. which 
however is useful only if the condition <I>min ;ot 0 
is satisfied. Geshkenbe1n and Ioffe [2] obtained an 
analogous inequality with a functional satisfying 
this condition. The form of this functional depends 
on the properties of particle a and on the type of 
the reaction describing the transition of particle a 
into particles b and c. For example for a boson 
<I>( a) has one form and for a fermion it has a sub
stantially different form. If a is a fermion then 
the functional <I> differs somewhat for the scalar 
and pseudoscalar cases. [2] 

In a conversation with me B. L. Ioffe has posed 
the question of the possibility of an analytical solu
tion of the extremum problem for the functional <I>. 
In the present paper the solution of this problem is 
given and, consequently, analytic expressions are 
obtained for upper limits of coupling constants. 

Let particle a be a boson of mass rna. As was 
shown in [2] the coupling constant of the three 
fields a, b, and c satisfies the inequality 

(1.1) 

where the masses fib and me are such that for 
all possible transitions of particle a into particles 
b and c the sum (fib + me) is closest to rna. 
rna < mb + me. r ( K2) is. the vertex part for the 
transition of the boson a into the bosons b and c, 
and q(K2) = [; -(mb +me )2 ]1/2[ K2 -(mb- me )2] 1/2/2K. 

In terms of the dimensionless variable x = K2/ 
(mb +me )2 the inequality (1.1) becomes 

a 2 1 r _!_Jr(xl\ 2 V(x-t)(x-J..l dx<L (1. 2) 
0 ~ (mb + mcJ" ~ 2:rt (x- cr)2 x 

1 

where 

a< 1, a< 'A. (1.3) 

The inequality (1.1) is a consequence of the in
equality 

(1.4) 

where D(K2) is the Green's function of the boson a. 
We shall derive this inequality because the deriva
tion presented in the paper of Geshkenbe1n and 
Ioffe [2] does not seem to us to be sufficiently 
convincing. 

From the Lehmann -Kallen representation [a] 

D(x2)=--
x2-m~ 

p (x' 2) ;:;> 0 
(1.5) 

it follows that D(K2), hence also n-1(K2), is an 
R-function. 

An arbitrary R-function F(x) has the repre
sentation [ 4J 

co 

F (x) = -2
1 \ 1 ) xx' da (x') + R.e F (i), (1. 6) 
:rt J •X -X 

-co 

where dcr(x') ::o: 0 is some distribution of nonnega
tive masses with a finite total mass (see Appen
dix I) 

co 

~ da (x') = 2nlmF(i) < + oo. (1. 7) 
-co 

Let us separate out from Eq. (1.6) all the delta
function terms. Then 

co 

F (x) = .,- -, - da1 (x') + R.e F £) 1 ~ 1+xx' (" 
":rt X -X 

-co 

(1. 8) 

830 



ANALYTIC EXPRESSIONS FOR UPPER LIMITS OF COUPLING CONSTANTS 831 

where J.Lk > 0 is the coefficient of o(x'-xk), (J.L 00 

= 0 if there is no delta-function term at oo ), 

da1 (x') 2::: 0 and 
00 

!Loo +~ILk+ ~ da1 (x') = 2:rt Im F (i). (1.9) 
-00 

It follows from Eq. (1.6) that for any interval 
of the real axis for an arbitrary function f( x) one 
has 

lim 1 f (x) 2 Im F (x' + i6) dx' = \ f (x') da (x'). (1.10) 
s~+oJ 1+x'2 J 

In particular, 

the lower half circumference, the upper edge into 
the upper half circumference, the point x = a into 
the center z = 0, the point x = oo into the point z 
= - 1, and the functional cf? ( r) takes on the form 

" 
<D (r) = 2~ ~ f (B) I r [x (z)ll 2 dB, 

_, 

with the weight function 

8 - 1 (2 v (1 - C1) t2 + (1 -A,) 
f ( ) - 2 v 1- (l [(1- C1) t2 + 1] (12 + 1) 

z = i 9 (2.2) 

t =tan.!_. 
2 

(2.3) 

The family of functions inside the circle I z I < 1, 
on which the minimum of the functional <P(r) is 

F' (x) = __!__ f (1 + x'2) da (x') = J_ f Im F (x'- i6) d , being sought, is characterized by the following 
2n J (x'- x)2 n J (x'- x)2 X • properties: 1) the r ( Z ) are regular in the closed 

-oo -oo (1.11) circle I z I :S 1 with the point z = - 1 excluded, 
Since n-1(K2) is an R-function which is real for r(O) = 1 and r(z*) = (r(z))*; 2) for any E > 0 
K2 :s; (mb + m 0 )2 and whose derivative at the point in a sufficiently small neighborhood of the point z 
m~ equals 1, it follows from Eq. (1.11) that = - 1, I r ( z ) I < exp ( E/ 11 + z I . 0 

oo Szego [S] and Smirnov [S] have completely solved 
I Im v-1 (x2) dx2 < 1, the general extremum problem for the functional 
J (x'2 m2) 7r 

(mb+mc)' - a J ·e p(l:l)l F(ei >l 2dl:l, where p(l:l) is a prescribed 
i.e., the inequality (1.4). The equality became an -1r 
inequality because the integral extends not from nonnegative function and F ( z ) is an arbitrary 
_ oo to + 00 but from ( mb + me )2 to + 00 • The fact function from the class H2 (about the class H2 
that Im n-1( K2) = o on the interval (- oo, (mb +me )2) see bel?w ). We ':ill show that the result of Sz~go 
does not change matters since the function n-1( K2) and ~mirnov ap~hes to o~r case as well, but will 
may have poles in that interval. It is easy to con- obt~m the solutiOn by a di~ferent method in or~er 
vince oneself that each pole gives a contribution to, m contrast to the solutiOn of Szego and Smirnov, 
J.L (1 + x2 )/(x -x)2 to the integral (1. 11). make it directly applicable to the case of a func-

k From\he r~presentation (1. 6) it is easil estab- tional of several functions, subject to several linear 
lished that the R-function satisfies a disper:ion re- relations. It is precisely this kind of extremum 
lation with one subtraction (see Appendix I). probl.em that must be solved if the particle a is a 

2. Let us denote the integral in Eq. (1.2) by cf?(r). fermion. 
The problem consists in finding the minimum of 3. Let p~ 8) be a nonnegative function and the 

t~is functional; at that it is necessary to define pre- integral J p( e) dl:l < + oo. Under these conditions 
Cisely the class of functions on which the minimum -1r 

is being sought. In correspondence with the work there exists a set of orthonormal polynomials 
ofGeshkenbeinandioffe, it is supposed that r(x) cf1n(z) withtheweight p(l:l), i.e., asetofpoly-
is a function that is regular in the plane with the nomials satisfying the conditions 
cut ( 1, + oo) and is real for x < 1, consequently 
r ( x) takes on complex conjugate values on oppo
site sides of the cut. We shall assume that at oo 

the function r (X) grows slower than any power 
of I x 1112, i.e., that for any E > 0 for sufficiently 
large I xI the function I r (x) I < exp ( E I x 1112 ). 
The function r ( x) is normalized by the condition 
r(a)=L 

Let us map conformally the cut x-plane onto the 
unit circle I z I :S 1. We let 

t-i 
Z=-t+i' 

t= .. !x-1_ v 1-(l (2.1) 

This mapping takes the lower edge of the cut into 

" 
2~ ~ P (8) !Jln (i9) !Jl~ (e-19) dB = {Jnm· (3.1) 

This set of polynomials is unique if one imposes 
the additional requirement that the coefficient of 
the highest power zn in cf1n(z) be positive. If the 

1>we note that the minimum of the integral (2.2) on the 
class of all regular functions (z), normalized by the condition 
r(O) = 1, is equal to zero. This can be seen by setting 

[ 1-z l r n (z) = exp n 1 + z - n , 

then as n ... +oo the function ct>(rn) ... 0. 
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weight function p ( ()) is an even function then all 
the coefficients in the polynomials <Pn(z) are 
real. [5] We shall consider only such weight func-

7r 

tions p ( ()) for which the integrals J lln p ( () ) I d() 
-71" 

exist, so that the harmonic function which is equal 
to ln p( ()) on the circumference is given by the 
integral 

1t 

2~ ~· In p (8) {t + ,. _\";:-;:s ca _ cp)} d8, z = re'"'· 
-1t 

The Poisson kernel { ... } is equal to the real 
part of the Schwarz kernel ( ei() + z )/ ( ei() - z ), 

1 J7r ei() + z 
consequently the integral 271" ln p( ()) ei() _ z d() 

-71" 

is a regular function inside the circle I z I < 1, 
whose real part tends to ln p ( () ) as z - ei(). It 
then follows that the regular inside the unit circle 
function 

1 ~ i 9 +z ) D (z) =exp( 4n J lnp {8) e'9 _ 2 d8 (3.2) 

possesses the following properties: 1) D(z) ~ 0 
for I z I < 1; 2) I D(rei() )lz- p(e) as r- 1; 
3) D( 0) > 0. The function D( z) plays a fundamen
tal role in the solution of the extremum problem. 
In Appendix II the following identity will be proved: 

(3.3) 
n=O 

In particular 
00 1 1 
~ I IP n (z) 1

2 = 1 - 1 z J• 1 D (z) J2 ' 

00 

~ l1Pn (0) 12 = n-2(0). 
n=O n=O (3.4) 

A function ljJ ( z) regular inside the unit circle 
00 

6 cnzn is said to be a function of the class Hz 
n=o 

if 6 I cn lz < + oo. It is in terms of this class of 
functions that one solves the problem of the condi
tions necessary in order that the Fourier series of 
a function F ( z ) converge to that function. In Ap
pendix II will be proved the property established 
by Smirnov [S]: the Fourier series in the polyno
mials <Pn ( z ) of a function F n ( z ) regular inside 
the unit circle converges uniformly to the function 
F ( z ) in an arbitrary inner circle if and only if the 
product D(z) F(z) belongs to the class Hz. At that 
the condition of completeness is satisfied 

1t 

Fn = 2~ ~ p (8) F (e'0) <p~ (e-'0) dfJ. (3.5) 

From here one immediately obtains the solution to 
the problem of finding the minimum of the functional 

1t 

<D (F; p) ,; 2~ ~ p (0) 1 F (e'9) 12 d6 (3.6) 

subject to the relation F ( 0) = C, on the family of 
functions such that the product D(z) F(z) belongs 
to the class Hz. Indeed, it follows from Eq. (3.5) 
that one must find the minimum of the sum of the 
series 

00 00 

~ I F n 12 = ~ F nF ~ (3. 7) 
n=O n=O 

subject to the linear relation 

n=--=0 

In the general case, when the quantities appear
ing in Eq. (3.8) are complex, one obtains two linear 
relations 

- i~(<pnFn -cp~F;,) = 2{;2, 

(3. 8') 

Introducing the Lagrange multipliers A.1 and A.z 
we find that for the extremum function 

F n = (A1 + i"-2) cp~ (a'). (3. 9) 

On substitution in Eq. (3. 8) we obtain 
00 

A1 + iA2 = (C1 + iC2) j ~ ICfln (a) 12• (3.10) 
n=O 

It follows from Eqs. (3.4) and (3.3) that 

<Dmin = (A~ +"-~) ~ lrpn (a) [2 = I C 12 (I -I a 12) I D (a) 12 , 

fextr (z) = (Al + iA2) ~cpn (a) rpn (z) = C \-=_ 1a~~2g(~l . 

(3.11) 

If the quantities F n. a, <P n (a) and C are real 
then the relation (3.8) defines a hyperplane in the 
Hilbert space of the coefficients { Fn}, and <I>min 
is nothing else but the square of the distance from 
the origin of the coordinate system to that hyper
plane. 

4. For the extremum problem of Sec. 2 the 
weight function p(e) is equal to f(()), Eq. (2.3), 
a = 0, C = 1. For this weight function Z> 

D (O) = ( 1 + -.~~ = ~r I 2 V2 (1 + -v 1 -a), (4.1) 

D (z) = (1- z) (1 + z~'f, 
2V2c1-~l;. 

X rV1=1+V1-~+z(Vi=X-Vt=Ct.ll'1'. (4.2) 
1 + v 1- ~ + z (1- v 1- ~) 

2lThe integral giving D(O) can be found in any table of 
integrals, the integral for D(z) is evaluated by Geshkenbeln 
and loffe. 
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If for any E > 0 within a neighborhood sufficiently 
close to the point z = - 1 the function r ( z ) is less 
than exp ( E/ 11 + z I) then the same is true of the 
product D ( z ) r ( z ) . In addition 

1t 1t 

\ ID (e19) 12 1 r (ei9) 12 dO = \ f (0) I r (e10)12 dO< + 00, 

-n: 

In Appendix III it will be shown that it follows 
from these two properties that the product 
D ( z ) r ( z ) belongs to the class H2 and therefore 
the general solution (3.11) is valid in this particu
lar case as well. Since a = 0, C = 1 we have 

rf>mtn = D 2 (0), r 3KCT = D (0)/D (z). (4.3) 

If one substitutes into these expressions the 
values D(O) and D(z) from Eqs. (4.1) and (4.2) 
one obtains the following expressions for all ex
tremal quantities: 

I' ( ) _ _!_ CJ! 1- ct + V 1- A)'/, 1 
extr X -- • 

2 1+V1-ct v1-x 

Sec. 3. The minimum of the functional is sought 
on a family of functions regular inside the unit 
circle, with all products Dv ( z ) F v ( z ) belonging 
to the class H2• By Dv(z) we mean the function 
D(z) corresponding to the weight function Pv(z ). 

This problem is solved in precisely the same 
way as the extremum problem for one function 
with one linear relation. Each of the functions 
Fv(z) is expanded in the Fourier series 
I: F vn<P~) ( z) in the orthogonal polynomials cor
responding to the weight function Pv ( e ) . The 
functional <I> goes over into the sum 

co 

(5.3) 
n=O 

To each of the relations (5.2) there correspond 
two Lagrange multipliers Ai1 and A.i2• If one intro
duces Ai = Ait + it..i2 then for the extremum func
tions one has 

I 

F = "" I. a~ m(v)• (z:). vn ~ l zv"t'n t (5.4) 
1~1 

X (1 + i Vx=i) (Vi=a- Vi=X) 
cV1-A- V1-x)'1, 

(4.4) The multipliers A.i are determined from the set of 
equations 

1 v 1--=a: - v 1=],. 
([)min = ----;===- (4.5) 

8V1-ct (1+V1-ctl2 

The care that must be exercised when taking 
the limit in solving extremum problems is illus
trated by the following circumstance, interesting 
in its own right. 

Let us suppose that the weight function tends to 
zero on some interval. Then D( 0) and <I>min also 
tend to zero. It follows that if the lower limit in 
the integral defining the functional <I> should lie 
some distance to the right of the beginning of the 
cut then <I>min = 0, no matter how small that dis
tance might be. 

5. For physical applications a somewhat more 
general extremum problem is of interest, namely 
to find the minimum of the functional <I>(Fl> F2, ••• , 

Fk) which depends on k functions in the form 

k " 

<D = h 2~ \ Pv (8) I Fv (e19 ) 12 dfJ (5.1) 

subject to several linear relations 

k 

~ aivFv (Zt) = b;, i = 1, 2, ... , l, 
'Y=l 

I Zt I< I. 
(5.2) 

It is assumed that all Pv( e) are nonnegative 
functions that satisfy the conditions formulated in 

where 

I 

~ c11t.1 = b1, 

/=1 

i = 1, 2, ... ' l, (5. 5) 

(5.6) 

The solution of the extremum problem is ex
pressed in terms of the cij as follows: 

0 b~ ... b; 
I 

<Dmtn = h b;A., =- (5. 7) 
1~1 

and the extremal functions as follows 

I • A 
F (z) = - 1 - ,, ~-1- (5.8) 

v D (z) LJ 1 • D* ( • ) .. 
v '=1 -z1z v z1 

In the fermion problem k = 2, l = 3, and the 
weight functions are such that D1 ( z ) and D2 ( z ) 
can be evaluated explicitly. As a result a closed 
form expression can be given for <I>min in terms 
of the particle masses rna, mb, and me. [2] 

I am grateful to B. L. Ioffe for useful discus
sions. 

APPENDIX I 

An arbitrary positive function v (!;) harmonic 
inside the circle I 1; I < 1 can be represented in 
the form 
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" 
v m = 2~ ~ 1 +r2_\~-:o2s(6-<p)d'ljl (e), ~ = re1~, (1.1) 

-7t 

where dl{;( 8) is a certain distribution of nonnega
tive masses. We omit the proof as there can be 
no doubt as to the truth of this assertion. It is 
clear that the total mass 

tt 

~ d'ljl (e)= 2nv (0) < + oo. (1.2) 
-7t 

It follows from Eq. (I.l) that the analytic function 
f( t) = v( t) - iu( t ), for which v( t) serves as its 
real part, can be represented in the form 

1 "~ i 0 + ~ f (~) = -2 -.0- d'ljl (e)+ i Im f (0). 
n e' -~ 

(1.3) 
-7t 

In other words, a function regular inside the unit 
circle and with a positive real part can be ex
pressed in the form Eq. (1.3). 

This fact has at one time (1910) been established 
by Caratheodory and Herglotz. If one goes over 
from the unit circle It I < 1 to the upper half-plane 
1m x > 0 by means of the transformation t + 1 
= 2i/(x+l), and from the function f(t) to the R
function F ( x) = if ( t), then one obtains the repre
sentation, Eq. (1.6). From Eq. (1.6) and the iden
tity 

it follows that 
00 

F (x) = F (x0) + -21 \ [-,-1 - - -,-1 -] (1 + x'2) dcr (x'), 
lt J X-X X-Xo 

-00 (1.4) 

but ( 1 +x' 2 ) dcr (x') may be replaced by 
2 1m F ( x' + io )dx' and therefore 

00 

F (x) = F (x0) + ~ I [-x' 1 - -,-1-J Im F (x' + i6) dx', n .) -x x -xo 
-oo (1.5) 

i.e., every R-function satisfies a dispersion rela
tion with no more than one subtraction. Let us 
note that in the relation (1.5) it is not assumed that 
the function F(x) has no real poles. One has the 
relation 

00 " 

~ 2 Im1 ~x~,d i/S) dx' = ~ dcr (x') = 2n Im F (i). (1. 6) 
-oo -tt 

Sometimes the following property of an R-function 
is useful: it satisfies the double inequality 

sin <p __!_ I F (x) I < ~r 
C r sm <p ' 

x = re1'~', r> 1, (1. 7) 

where C is a constant that depends on the function 
(see C7J, p. 72). 

APPENDIX II 

Functions of the class H2 are characterized by 
00 

the following property: if f(z) = .L:; cvzv then 
v=o 

If f( z) and g( z) are functions of the class H2 then 

" " 
lim ~ ~ f (pe'e) (g (pe'o))* de = 2~ ~ f (e'o) (g(e'e))* de. 
~~~ - ~D 

It is easy to see that the function D( z) belongs to 
the class H2 (see [5], p. 285). Let us prove that 
if ~ F v«P vC ei8) is the Fourier series of the function 
F(eie) in the polynomials cpv(t) and the product 
D(z) F(z) belongs to the class H2 then the com
pleteness relation 

holds. From completeness will follow the uniform 
convergence of ~Fvcpv(z) to F(z) inside any inner 
circle. 

Let us denote by «Pp,v(z) a set _of orthonormal 
polynomials with the weight I D(pe18 >I. Since as 
p- 1 the quantity I D(peie >1 2 tends to p(O) it 
follows that for any fixed v the function «Pp,v(z) 

tends uniformly to cpv(t) in the closed circle I z I 
s 1. Let us denote by F p, v the coeffic~ents in the 
Fourier expansion of the function F(pe18) with re
spect to this set of polynomials: 

1t 

F P, v = 21n ~ I D (pe10) 12 F (pe10) <r;, .,de 

" 
= 2~ ~ (D (pe'0) F (pe10)) (D (pe'0) <p v (pe'O) r de. 

Since the products D(pei8) F(peie) and 
D(peie )cpv(peie) belong to the class H2 we have, 
as a consequence of Eq. (ILl), 

1t 

lim Fp,v = 2~ ~ (D(e 10)F(e10)(D(e10 ))<pv (e10))*de 
P-1 

-1t 

1t 

= 2~ ~ p (e) F (e 10 ) <p: (e-'0) de = Fv. 
-1t 

Thus the completeness relation is valid for the 
function F(pei8) 

~ I Fp,v J2 = ~ ~ /D (pe'e) 121 F (pe'e) 12 de. 
V=O -7t 

As p - 1 the integral on the right tends to 
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7r 

(2rr)-1 ·fp(O)IF(ei8 )1 2 d8 since D(z)F(z)E H2 
-11" 

and, consequently, 

~ I Fv 12 > jit ~ p (8) IF (ei9) 12 d8. 
~=0 -~ 

By the Bessel inequality 

~ IF v 12 <; 2~ ~ p (e) 1 F (ei9) \2 d8, 
V=O 

i.e., the equality sign holds. 
Let us take for F ( z ) the function [ ( 1 -a *z )x 

D(a)D(z)]-1, lal <1. Itiseasytoverifyby 
direct calculation that F v = cp t (a*). 

Since D(z)F(z) = (1-a*z)-1D(a) belongs 
to the class H2 it follows that for I z I < 1 

00 

~ ljl: (a*) IPv (t) = [ (1 - a*z) D (a) D (z)]-1. 

v=O 

This identity is given by Szego (see [5], p. 311) 
and by Smirnov. [6] The difference lies in the fact 
that we solve the extremum problem on the basis 
of this identity whereas Szego and Smirnov prove 
the identity on the basis of the solution of the ex
tremum problem. 

APPENDIX III 

Let lj!(z) = ~cnzn be a function regular in the 
closed circle I z I :::=: 1 with the exception of the 
point z = -1 and satisfying the following condi
tions: 1) for any E > 0 in a sufficiently small 
neighborhood of the point z = - 1 one has IIJ!( z) I 

7r 

< exp (E/I1+z I); 2) jllf!(ei8 )1 2 d8 < +oo. Let us 
-11" 

show that the function lj!(z) belongs to the class 
H2, i.e., that ~I cn 12 < + oo. 

The transformation w + i = 2i/ ( 1 + z ) maps the 
circle I z I < 1 into the upper half-plane Im w > 0; 
at that the point z = - 1 goes to oo . We introduce 
the function F(w) = ih lj!(z)/(w+i). The function 
F(w) is regular in the upper half-plane, for any E 
> 0 and sufficiently large I w I the inequality 
I F ( w) I < exp ( E I w I) is satisfied and, finally, the 

00 

integral J I F ( w ) 12 dw < + co • 
-oo 

As was shown by Wiener and Paley (see [a], 

p. 9 ), for a function with these properties the in
tegral over the large upper semicircle in the 
Cauchy formula tends to zero, i.e., 

00 

1 ~ F (w) F(w) = 2----: -,--dw. nt w -w 
-00 

From here there follows for the function lj!( z) the 
representation 

'" (z) = ..i-, \' '¢ (z') dz' 
't' 2nt .\ z' - z ' 

lz'i=I 

(III.1) 

I.e., the Cauchy formula is valid for the function 
lj!(z) not only when the integration is over an inter
nal circle but also when the integration is over the 
boundary circle. 

It follows from Eq. (III.1) that 

" 
c = __!_, I •'- teia) e-tne d8 

n 2nt l 't' ~ ' 
-1t 

i.e., cn coincides with the Fourier coefficient of 
the function lj!( ei8 ). In accordance with the Bessel 
inequality 

" 2J [en 12 < 2~ \ ['i' (e'e) 12 d8 < + oo. 
-1t 

1 Lehmann, Symanzik, and Zimmermann, Nuovo 
cimento 2, 425 (1955). 

2 B. V. Geshkenbe1n and B. L. Ioffe, JETP, this 
issue, p. 1211. 

3 H. Lehmann, Nuovo cimento 11, 342 (1954). 
4 R. Nevanlinna, Acta Fenneciue, Ser. A, 18, 

(1922). 
5 G. Szego, Orthogonal Polynomials, Am. Math. 

Soc., 1939. 
6 V. I. Smirnov, Izv. AN SSSR, ser. matem. No. 3 

(1932). 
7 N. G. Chebotarev and N. N. Melman, Trudy, 

Math. Inst. Acad. Sci. 26, Moscow, 1949, p. 71. 
8 R. Paley and N. Wiener, Fourier Transform 

in the Complex Domain, Am. Math. Soc., 1934. 

Translated by A. M. Bincer 
201 


