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The ground state energy and other characteristics of a Fermi system are calculated using 
the method of Green's functions and Landau's theory of Fermi liquids. The calculations are 
carried out for a potential with a long-range and a short-range part such that n1f 3rs « 1 and 
n1f 3rz » 1, where rs and rz are the ranges of the short- and long-range parts and n is the 
density of particles. 

INTRODUCTION 

LANDAU'S theory of Fermi liquids permits the 
calculation of the energy of the system, the effec
tive mass of the excitations, the velocity of zero 
and ordinary sound, and other characteristics of a 
Fermi liquid. However, the theoretical formulas 
contain a number of unknown numerical parameters 
which can not be determined within the framework 
of a phenomenological theory. These parameters 
can be calculated only on the basis of a micro
scopic theory. Up to now, such calculations have 
only been carried out in the gas approximation, i.e., 
for the case where the range of the forces is ap
preciably smaller than the average distance be
tween the particles n-1! 3, where n is the density 
of particles. 

In the present paper we calculate the vertex 
part and the basic characteristics of a Fermi sys
tem for the case where the interaction potential 
consists of two terms Vs and Vz, such that Vs 
can be treated in the gas approximation, i.e., the 
range rs of Vs is much smaller than n-1! 3, 

whereas Vz satisfies the opposite condition: rz 
» n-1! 3, where rz is the range of Vz. The magni
tudes of V s and Vz can be arbitrarily large. The 
method of summing over graphs allows one to find 
the vertex part r a {3, y 0 ( Pi• P2• Pi + k, P2 \- k) for 
I k I Po> Wk, where p0 is the Fermi momentum. 
However, the ground state energy and other char
acteristics of the system are expressed in terms 
of the vertex part raf3, yo in the limit Po I k I wki 

- 0, Wk- 0, i.e., rwf3 ". To calculate rW{3 "' 
0! , yu 0! , Yu 

we use the basic relations of the theory of Fermi 
liquids. 

Fermi liquids with potentials consisting of two 
terms with rs « n-1! 3 and rz » n-1!3 have already 

been studied earlier in their application to the nu
cleus.Ci,2] Vagradov and Kirzhnits [i] have taken 
account of the long-range force V z with the help 
of the perspicuous but inaccurate method of the 
self-consistent field in configuration space. 
Amus'ya [2] calculated the energy of the system by 
the graph technique, but he assumed that the expres
sion for the vertex part of the long-range forces 
found by summation of graphs is valid for all k 
and w. Actually, this expression is correct only 
when Po I k I > w (see below). Moreover, in [2] no 
account was taken of the graph r c• which is of the 
same order of magnitude as the graphs r a and rb 
[see formula (7) ]. Both in [i] and [2] Vz is an 
attractive potential, so that the normal state of the 
system is unstable (see below). 

THE VERTEX PART FOR Po I k I > w 

In order to calculate the energy spectrum of the 
system we must know the vertex part (box dia
gram) raf3,yo<PiP2• p3p4 ). Let us assume first 
that V = Vs, Vz = 0. Let us compare the ladder 
graph of second order (ladder with two rungs, 
Fig. 1a) with the other nonvanishing graph of sec
ond order, viz., the chain with two dotted lines 
( Fig. 1b). In the first case the matrix element is 
equal to 

Ma ~~Go (p3- p) G0 (p4 + p) V (k- p) V (p) d4p 

~ V2(0)r~1 • 

p = {p, ro}, 

Go (p) = [ro - E0 (p) + ll+ if> sgn (I pI - Po)l-1; 

lA is the chemical potential, E0 (p) = p2/2; 1i = m =I; 

Po = (3n2n)''•. 
In the second case 
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FIG. 1 

Mb ~ V2 (k) no (k), 

no (k) = i (;n)« ~ G0 (p + k) Go (p) d4p 

2 \ no(p)-no(P+k) dp; 
= (2n)3 ~ ffi-eo (p + k) +eo (p) 

if I k I « p0, then [3] 

n (k) ~ _2 _ \ ano Po (nk) d 
0 ~ (2n)3 ~ ae Po (nk) - ffik p 

in[ffikl J· + 21 k IPo e (Po I k [-I <Ok I) ' 

( 1) 

here n = p/ I pI, 9 ( x) = 1 for x > 0 and 9 ( x) = 0 
for x < 0. II 0 (k) ~ -p0/1r2 for Polk! »wk and 
II 0 ( k) ~ p~ I k 12 /37r2w~ for Po I k I «Wk. 

Thus Mb/Ma < n 1f 3r s. Hence we can restrict 
ourselves to graphs of the ladder type for nr~ 
«1. 

Let us now assume that V s = 0 and nrl » 1. 
Obviously, we can then restrict ourselves to graphs 
of the chain type if Po I k I > w . If, on the other 
hand, Po I k I < w, we must also take into account 
more complicated graphs, as is seen from (2). If 
both Vs ;o' 0 and V z ;o' 0 the complete box diagram 
ra(3, yo for Po I k I > w can be calculated using only 
the graphs of the type shown in Fig. 2 and similar 
graphs in which the external lines for the terminal 
ladder or chain are both ingoing or both outgoing, 
and not one ingo ing, the other outgoing, as in Fig. 2. 

Let us now consider the graph of Fig. 2 and all 
graphs of the same form which differ from one 
another only by the number of rungs in any one 
ladder or the number of links in any one chain. 
Summing all graphs of this type, we obtain the 
graph of Fig. 2 in which only one ladder is re
placed by the box diagram of the gas approximation, 

i.e., by the sum of all graphs of the ladder type 
rga{3,yo<PtP2• P3P4), or one chain replaced by the 
box diagram rz a(3,yo ( PtP2, p3p4), i.e., the sum of 
all graphs of the chain type. The expression for 
r g for a Fermi system has been found by Galit
sk:il: [4] 

fg = f (p', p) + ~ dqf (p', q) ( (p, q) 

[ 1 N (q) J 
X q•- p• + i/5 + ffip - q2 - P2 I 4 + ii5N (q) ' 

2p' = P1 - P2; 2p = Pa - p4; P = P1 + P2; 

N (q) = I - n (P/2 + q) - n (P/2 - q). (3) 

Here f ( p', p) is the two-body scattering amplitude 
multiplied by 47r. For r 1 we can easily find the 
equation ( see Fig. 3) 

f 1 all. yo = b.,_y [61lsV1 (k) + V1 (k) n (k) rl."-'ll. a•s/21, 

from where we obtain 

f 1 = V 1 (k)/[1- V 1 (k) n (k)l. (4) 

The zero order Green's functions G0 ( p) in the 
graphs of Figs. 2 and 3 must, of course, be re
placed by the exact Green's functions G ( p ) . 
Therefore, the expression (3) for G, which has 
been found using G0, is approximate. 

The polarization operator II ( k), expressed 
through the exact G, can be calculated in the fol
lowing way. According to [s,sJ, G has close to the 
pole € = 0, I p I = Po the form 

G (p, e)= a 
e- v ( I P I - Po) + i/5 sgn ( I P I - Po) 

Po v = --.. 
m 

The product G( p) G ( p + k) under the integral over 
p can, according to Landau,[sJ be written in the 
form 

G (p) G (p + k) = 2:nia2 ffi ~n:ink) b(e) 6( I PI -Po) + <:p (p), 
(5) 

r, :>--<' +'}--o-<"+ 'H~ · · · 
P;1 Pt. q- Psl Pz(J PJl p, If 

FIG. 3 

1
~a ~n 

~~~~])-·····<JJ>~ 
hl / n, ,. p.o 

n, rungs rungs rungs 

FIG. 2. Graph with r ladders and s 
chains. Dotted line: V 8 (p), wavy line: 
Vt(p). 
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where cp( p) is the regular part of G ( p) G ( p + k). 
We obtain from (5) 

II (k) = c- b [ 1 - 2v ~ k 11n j: ~ ~: ~ :I 
+ ~~ 11 : 1

1 e ( v I k 1- I w I ) ] , 

lim II=c-b. (6) 
ro/p,[ k [-+0 

Extending the summation over graphs of the 
type of Fig. 2 to the other ladders and chains, we 
obtain the same graph in which now all ladders are 
replaced by the box diagram r g and all chains by 
the box diagram r 1. Adding graphs analogous to 
that of Fig. 2, but with two ingoing or two outgoing 
lines at all terminal ladders or chains, we obtain 
for the total box diagram r the expression (for 
w <Po I k I): 

r = rg + r 1 + f 1 + r2 + ra + f 4 , 

where r 1, r2, r 3, and r 4 are shown in Fig. 4. 
Figure 4 leads to a system of four integral equa

tions for r 1• r2, r3. and r 4• which are given graph
ically in Fig. 5. This system is easily solved, but 
in our approximation we can manage without solving 
it. Indeed, let us estimate the graph r a in Fig. 4 
by replacing r g by the constant amplitude f0: 

2il'>0_/>!ls (' 
fao:/3, yS (pl, P2; Pa, P4) = (2n)• j fg (pl, P + k; Pa, P) 

X fz (p, P2; P + k, P4) G (p) G (p + k) d4p 

::::::: 26o: . ./J{ls/{Jfz (k) n (k); 

forw ~Polk I f 1 =- 2/o (b- c) f 1 ; fo ~ 's· 

Thus r a/rz..., nV 3rs, i.e., the inclusion of the addi
tional box diagram r g gives the small factor 
nV 3rs· In calculating r 1 and r 2 we can therefore 
neglect all graphs containing two or more box dia
grams r g• restricting ourselves to the graphs r a• 
rb, and r c. Calculating these in the same way as 
r a' but without the replacement of rg by the con
stant f0, we find [the terms containing cp are not 
written down in ( 7) ] : 

FIG. 4 

+ 0) v (kn) dQ 
w; Po"· ro- v (kn) ' 

rb::::::: (c~b) f 1 (k) ~ fg (p0n, 0; p2, w2; Po"+ k, w; P2 

v (kn) 
- k, w2 - w) (k )dQ, ro- v n 

+ O) v (kn) dQ 
w; Po"• ro- v (kn) ' 

if r g = fo, then rb = r a. fc = 4/of~ (k) D2 (k). 

(7) 

Let us now consider the simplest graph enter
ing in ra. namely r a= 

r da.fl. ys = 6._y6{lsr d; 

fd = (2~)• ~fg (p, P- p; Pa. P4) G (P- p) 

X G (p) fz (pl, P2; p, P - P) 

:::::::- (2: 2)a ~fg(p, P- p; Pa. P4) fz (pi, P2; p, P- P) 

•X dp 
rop -E (p)- e (P-p) + il'> sgn (I p 1- Po) 

Pzf3 

PC/.. 
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the integral over p will converge for such values 
of I pI for which the product rgr1 begins to de
crease appreciably, i.e., when I pI ""' r~1 ( rz - 0 
for IPI ~ r7t and rg-o for IPJ-r~t). There
fore 

and hence all graphs entering in r 3 and r 4 can 
be neglected. 

(8) 

As far as the long-range component of the po
tential, Vz, is concerned, there are two possibili
ties: 1) U 1rlnV 3 > 1 [ Uz is the maximal value of 

JVz(r) IJ and 2) u 1 r~nV 3 « 1. In the second 

case we can treat the potential Vz in the Born approx
imation. Here we have to include only the graph of 
first order in V z, so that we have for all values of 
k and w 

r = r g + V1 (k). (9) 

In the first case, which is of much greater in
terest, we have for Po I k I > w ( see above) 

r = fg + rl + ra + rb + rc. (10) 

rg + ra + rb + rc ~ rs; 

3 '/ for U1r1n' ~I, 

r > 0 for both signs of v l ( k), r g + r a + rb + r c 
depends on Pt and p2, while rz does not. 

VERTEX PART FOR ARBITRARY k, w, AND r w 

Let us first consider the case U 1r; n ¥3;:, 1. In 

Landau's theory of Fermi liquids the limiting 
values of r: rk = r for 1 k 1-- o, w/p0 1 k 1- o 
and rW = r for w - 0, Po I k 1/w - 0, play an es
sential role. From the value of r obtained by us 
[formula (10)] we can evidently determine only rk 
(it is important that in all parts of the graphs en
tering in rz according to Fig. 3 there are no in
sertions of the ladder type with Po I k' I < w'). Let 
us first write down the symmetrized box diagram 
ra{3,-yo which is obtained from ra{3,yo<PtP2• P3P4) 

by subtracting r af3, 'Y 0 with permuted arguments, 

P3'Y :;::! p4o. If r in ( 1 O) is regarded as a function 
of Pt• p2, and k, then 

- r (p1, P2• P2 - P1 - k) llo:8llJly· 

From this we find f~13 ,yo: 

-k k r o:Jl. y8 (ph P2) = r (p1, P2. O) llo:yllJ38 

- r (p1, P2, P2 - P1) llo:8ll!Jy· (11) 

In order to obtain r~/3 ;yo, we use the equation 

of Landau's theory of Fermi liquids which connects 
~w ~k .[sJ 
r a 13 , 'Y 0 and r a f3, "Y 0 . 

-"' -(k) p~a• \ -k 
r o:Jl, y& (ph P2) = r o:ll, y8 (p1, P2) + v (2n)3 J r 111l. ~8 (q, P2) 

x r:~. Y11 (p1. q) dQq· ( 12) 

The solution of ( 12) can be found by expanding 
into a series of Legendre polynomials .CsJ For the 
zeroth harmonic we must replace r~/3.~0 under 

the integral in (12) by the average value of 

r~tl.~o on the Fermi sphere, r~/3.~ 0 : 
-k 1 \ -k r 1lll. ~8 = 4n J r 111l, ~8 (q, P 2) dQq· 

The main term in ~{3,-yo will be rf<Pt• P2• 0): 

r: (p1, P2. O) = (b - c + Vz1 (0))-1 ~ n-'1•, 

the average values r a, b, c ( p 1p2, p2 - Pt) can be 
neglected: 

the average value rz ( PtP2• P2 - Pt) will also be 
small: 

( 14) 

We thus obtain from (12) for the Z-th harmonic 
of fw: 
r:~. y& =[f"'1llo:yllJl&- r'"'1llo:sll{ly][l + b ['rolj2(2l + 1)-1 ]; 

r o>O = fkl [ 1 - b (fk1 - f'rol /2)/2(2/ + I) ]-1 

rk 
f"'Oz l ; [rol;::::::; [kl ~feuD (l =I= 0); 

1- b cr1 + r:) 

r'"' = r~ + r~ + r~bc. 
where 

r~;::::::; I;,"k/2+ r~bc' rabc = ra + rb + rc. 

r~ = rj (p1, P2. O), 

(i = l, g, a, b, c). 

( 15) 

To estimate the magnitude of c in (6) and (15), we 
use the relation for a found in [3, 7]: 

a-1 = I - ~ ~r;;'13 , o:ll (p, q) qy (q) d4q/(2n)4. (16) 
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We find from ( 16) 

a-1 = I + cr"'o, 

and hence 

- cb-2j(r~ - V!1 (O)/b2) = I -a < I, 
r: = [b + aV~1 (O) ]-1 , r"'0~ - l!a [b2r~ - V~1 (O)l. 

It follows from ( 17) that 
( 17) 

r"'o/rk ~ u r3n'la 
l l 

r"'0/rk ~ n-'1•r~1 ~ I 

Using the basic equation of the theory of Fermi 
liquids,CsJ 

q 
n = lilT ( 18) 

we can find, by the method of successive approxi
mations, the symmetrized box diagram f atf3, 'Y 0 
for arbitrary k and w : 

~ r; 6~y6~5 
f ~fl. yo (Pl• P2• k) = k k 

1- b (r1 + r 1 )f(k) 

- (r~ + r~ + r~bc) ~~~oll{ly' 

(k (Jj I w + v I k 'I i1t I w I I t ) = 2v I k lin w- v 1 k 1 - 2v 1 k 1 6 (v I k I - w I ). 
( 19) 

If we introduce the spin operators a and a', we 
have 

~ rf 1 · · • 
r~ll. yo= -2 (rz + rg + rabc) 

1 - b (r1 + r:) t 
(aa') ' ' ' 

--2-(rz + rg + rabc)· (20) 

EFFECTIVE MASS OF THE EXCITATIONS AND 
ENERGY OF THE SYSTEM 

The quantity a2f~f3,yo appears in the expres

sions for the effective mass of the excitations m*, 
the velocity of zero sound (with momentum l) u z 
= s zv, the velocity of ordinary sound u, and the 
ground state energy of the system E0:[sJ 

(21) 

(22) 

(23) 

Eo = ~11 (N} dN, \ dN 11 (N) = J u2 (N) N . (24) 

The difference 1/m* - 1 is, according to (21), 
determined by the first and not the zeroth harmonic 

~w o of r atf3,atf3' i.e., not by rw , but by the small quan-

tities rz, r g - rg: 

_!__ = I - poa• \ [ 2(rk + r k - Fk - f'k ) 
m• (2:rt)3 J g abc g abc 

1 
--.- I = ~1 + ~2• ~2 ~ n'1·r~ · (25) 
m 

In (22) rw~ » 1 for Uzrln1f3 » 1; therefore [s] 

s0 = [br"'013l'1'. (26) 

From (23) we find 
2 3 2 2 3 

u2 ~~ Poa r"'o_ ~- Poa 1 (27) 
~ 3 + 3n• - 3 3n• [b•r:- v~1 (O)J · 

Substituting (27) in (24), we obtain for Ba/Bn 
R 0 

A£ E E ~ - n '- - tan-1 an'/, 3aNV l (0) [ 3 '/ 1 
u o = o - ideal gas~ a• 4 a 

!l.E0 =+ aVt(O)Nn ~ U1 r~n'1•E ideal gas for 

U 3 •;, ~ I· E 3 (3 2)'/, N •;, 
z'z'sn ~ , ideal gas= 10 Jt n . 

To have a system which is thermodynamically 
stable, i.e., u2 = Bp/Clp > 0, it is necessary that 
rwo > 0, i.e., 

If there are attractive forces, pairing has to be 
taking into account. 

(28) 

We see therefore that the correction to the ef
fective mass is small in the presence of long
range forces with U 1rf n 1! 3 ;:::, 1, just as in the gas 

model.[4• 8•9J The ground state energy and the 
velocity of sound, on the other hand, are appreci
ably larger than for the ideal gas (by the factor 
Uz~zn1/3 or n-113 r~11 3 ). This increase is connected 
with the presence of the long-range forces. It is 
clear that the transition to the limit rz = co, i.e., 
to Coulomb forces, is not possible in our formulas; 
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for Coulomb forces the system must be electri
cally neutral. 

In the case where U zr3zn113 << 1, when r is 
given by (9), rw = rk and the corrections to m*, 
U:, u, and E0 are small as compared to the ideal 
gas values: ~ n11 3 rs or ~ Uzr3zn113• 

In the case of the nucleus the inequalities 
n113 rs << 1 and n113 rz ::?:> 1 do not hold very 
strongly. Therefore, our model can only be re
garded as a limiting case if applied to the nucleus. 

In conclusion I express my gratitude to A. I. 
Larkin for an interesting discussion. 
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