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The number of free carriers in bismuth-type metals is investigated on the basis of the elec­
tron spectrum obtained in [i] for such metals. It is shown that as a result of the appearance 
of open energy surfaces for deep energy levels the number of carriers at high temperatures 
may be similar to that in semiconductors of intrinsic conductivity. Consequences of this are 
discussed in relation to the conductivity and optical properties. 

THE electron spectrum of metals with bismuth­
type lattice has been obtained earlier. [i] An in­
teresting property of this spectrum is the fact that 
the energy surfaces can be closed or open. 

The principal properties of metals are usually 
determined by the neighborhood of the Fermi sur­
face. Numerous experimental data indicate that 
in the case of bismuth[2] and antimonyC3J the 
Fermi surfaces are closed and have volumes cor­
responding to about 10-5 electrons per atom. This 
number is in agreement with theory. [i] The case 
of arsenic is not clear [4] and it may have open 
surfaces. The parameters which represent the 
arsenic lattice should (according to [i]) corre­
spond to about 10-2 electrons per atom. 

However, in contrast to the normal "good" 
metals, in the case of bismuth-type metals we 
are interested not only in the neighborhood of the 
Fermi surface. The scale of energies in these 
metals (for example the Fermi energy taken from 
the bottom of the conduction band, or the separa­
tion of the bottom of the conduction band from the 
upper edge of the nearest band, etc. ) extends only 
over several hundredths of an electron-volt. This 
means that at temperatures of the order of hun­
dreds of degrees the properties of these metals 
are governed by the whole energy spectrum and not 
only by the neighborhood of the Fermi surface. 1> 
Most important is the fact that by varying the en­
ergy we can go over from closed energy surfaces 
to open ones. 2> 

l) Arguments for the applicability of the quasi-particle model 
proposed here will be given in a later communication dealing 
with the behavior of bismuth-type metals under the action of 
infrared radiation. 

2lThe possible types of surfaces near k = 0 are listed in [•]. 

In the present work we shall consider what in­
fluence this effect has on the number of "free car­
riers" in bismuth-type metals. We shall deal only 
with metals in which the Fermi surfaces are closed. 

First of all we shall establish precisely the con­
ditions for the appearance of open energy surfaces. 
This can be done most simply for the vicinity o{ 
the point k = 0. According to [i] in the vicinity of 
this point, which has a rhombohedral (trigonal ) 
small group, we obtain four functions Ef0>(k) cor­
responding to four bands: 

(1) 

where p = akz; q = b-../ k~ + k}; z is the direction 
along the rhombohedral axis; and f, .6., y, a, and b 
are constants. Two of these functions ( E~o>, E~O)) 
decrease as I p I -----. oo , q -----. oo , while the other 
two ( E~O>, E~O)) increase. 

There are two different cases. If I y I > 1.6.1 
then the minima of the increasing and maxima of 
the decreasing functions, or in other words the band 
edges, correspond to the point k = 0. We then ob-
tain 

e~r;;,ax = f - I r I + ! I'll , 
eir:J,,.n = f + I r I + I L'lJ. (2) 

If, however, I y I < 1.6.1 then the upper edge of 
the lowest band E~O) and the lower edge of the high­
est band El0> correspond to the point k = 0, while 
the edges of the middle bands correspond to points 
q = O, p = ±.../ .6_2 -y2. Then we have 

e~':!wx = f - I r I -I L'l i. e~':!wx = f, 
8b?L,=f, ei';/,,.n=f+lrl+il'l!. (3) 
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Irrespective of the relationship between I .6. I 
and I y I, open energy surfaces appear only for the 
functions E~0 >, E~O> on condition that 

I e;o)- f I > I r I· (4) 

This means that if, for example, we go from the 
upper edge of the band E~O> downward then we nec­
essarily obtain first a series of closed energy sur­
faces, which then become open and finally the band 
Ef0> is included which gives only closed surfaces. 
The same will occur when the energy is increased 
beginning from the lower edge of the band E~O> 

According to experimental data, [2,3] there are 
holes in the vicinity of k = 0 in bismuth and anti­
mony, and the Fermi surface is closed. This 
means that f > 0 and the Fermi energy E = J.L( 0) 
is in the range 

8~r;},ax > fl (O) > f- I r I· (5) 

The electron parts of the Fermi surface lie in the 
region of the points k = ki, which have the small 
group c2h· According to the experimental dataP· 3] 

each such part of the Fermi surface is close to an 
ellipsoid with its center at a point ki. 

From the theory we again have, as in the vicin­
ity of k = 0, two alternatives: either the maxima 
of the bands E1, E2 and the minima of E3, E4 corre­
spond to k = ki, or the extremal points of E2 and 
E3 are displaced. According to the experimental 
data the first case is realized. In view of this, 
substituting into the general formula (10) in [1] 

Kx = Ky = Kz = 0 and y<1> = -y/3, Q<1> = -f/3- E, 
we obtain 

.ill - 1 f 1 I I VtR ..L " . ]2 + A2 
f]lll<lX - - 3 - 3 1 l - p 1 U Sign l ti , 

ru 1 f 1 I I 1 J![r< 1 " • ]2 1 A 2 e~max = - 3 - 3 j T p 1 u Stgn j T ti , 

Ill 1 f 1 ' ' v R " . 2 ' A 2 e,l"''" = - 3 + 3 1 r 1 - ! "' - v stgn r J --J- u , 

d;},,, = -+t + +.lri + Vlt"i- o sign rl 2 + L\ 2 • (6) 

This applies when the condition Eghax < EHhin 
is satisfied, i.e., 

%: r: > V-(~ + 0)2 + L\" + y-(~ - 0)2 + L\ 2 • (7) 

In the earlier work [1] conditions were obtained 
[formula (7)] for the energy surface to be closed. 
Substituting Q<1> = - E- f/3, y<1> = - y/3, we ob­
tain a range corresponding to closed surfaces: 

1 f 1 I I+ : P. ' " "g I - :1 - 3 I y I : P ~· u Sl n y . 
(8) 

From this we see that the order of appearance of 

surfaces of various topological types is completely 
analogous to the situation in the vicinity of k = 0. 

However, open surfaces appear in the vicinity 
of k = ki in a different way than near k = 0. 
In the latter case for E = f ± I y I open surfaces 
appear along directions which cover a complete 
conical surface. In the vicinity of k = ki the en­
ergy surface becomes open along one direction 
only [ cf. formula (16) in [1]]. Away from the 
boundary the range of open surfaces becomes 
finite and proportional to E - Ec, where Ec is 
the threshold energy. 

In order to satisfy the experimental data the 
Fermi energy E = J.L( 0) should be in the range 

-+t++lrJ-Vr~-osignyJ 2 +L\2 <fl(O) 

<- + f + + i r i -I~- o sign r [. (9) 

The condition of Eq. (7) obviously means that in 
the vicinity of k = 0 we also have the case when 
all the extrema of El0> ( k) are at one point k = 0. 
Then the expressions in Eq. (2) apply and, accord­
ing to Eq. (5) 

f- I r I < fl (O) < f- I r I + L\. (10) 

The compatibility of conditions (9) and (10) requires 
that f should be in the range 

ir 1-{ I~- o signrl>f> I rl 

- f (L\ + V L\ 2 + [~- o sign y] 2 ). (11) 

Obviously under real conditions all the param­
eters f, I y I, I f31, I o I, and 1.6.1 are of the same 
order of magnitude. At temperatures T « I y I 
the number of holes and electrons is governed by 
the volumes of the electron and hole parts of the 
Fermi surface, which are equal. These numbers 
will change as the temperature is increased. At 
first this leads to the usual corrections of the order 
of (TIE F )2, but at higher temperatures there may 
be more important corrections due to deep levels 
with open energy surfaces. On further increase 
of temperature we can have the situation when the 
number of carriers is completely governed by 
these levels. 

Let us determine the additional number of car­
riers due to such levels. Since open energy sur­
faces appear only in the second and third bands, 
the number of additional electrons is 

(12) 

where, as before, the subscripts 0 and 1 in the in­
tegrals indicate respectively the vicinities of the 
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points k = 0 and k = ki, and dZ3 /dE is the density 
of states in the range of energies in the third band. 
The number of additional holes is 

(13) 

We shall assume that the exponential terms in 
the denominators of Eqs. (12) and (13) are large 
compared with unity. In view of the rapid decrease 
of the integrands the main contribution comes only 
from the close vicinity of the values of q at which 
open energy surfaces first appear. Since the cor­
responding value of E!0> is greater than E!1>, the 
second integral in Eq. (12) can be neglected. The 
relationship between the thresholds for the two in­
tegrals in Eq. (13) is less definite. The difference 
between the threshold for the vicinity of k = ki and 
that of k = 0 is 

4-f- Tl r 1-1~+ b signrl· 
According to Eq. (11) this difference is greater 
than 

fIr 1- t.. -I~+ b sign r 1- V t..2 + W- b sign rl'i. 

The sign of this quantity is, strictly speaking, in­
determinate although the inequality (7) gives us 
grounds for assuming that it is most probably 
positive. In view of this we shall leave only the 
second of the integrals in Eq. (13). 

The density of states I dZ~0 > /dE I can be easily 
determined by means of Eq. (1) rewritten with q 
as a function of p and E:~0 >. We then have 

I dZ~O) I 1 \ dq 
J de = '2.n2ab2 J dp de~o) . 

Here we must allow for the fact that q2(p, E:~0 >) is 
a two-valued function and the above integral is in 
fact the difference of two integrals with different 
q2(p, E:~O> ). This doubles the result. Another mul­
tiplier of 2 appears because p can have different 
signs. As a result of this we find that 

l dz~o)l 2 \ (f-e)p2dp 

---;[8 = n•abz J {[(f- e)'- r"l Pe + r•~•j'/, . 

Beyond the threshold, i.e., when E < f- I y I, large 
momenta, of the order of the period of the recip­
rocal lattice, i.e., values of p of the order of 1 
ev, 3> become important. Then we obtain finally 4> 

3)Strictly speaking in the case of large momenta we cannot 
use the formulas obtained in [•]. However, the error is probably 
small because of two circumstances. First, the spectrum con­
sidered has the property that when deformation vanishes the 
conduction and valence band touch along the energy surface 

l
ddztl =A (f-e) ~ V(f-e)•-r2 (e<f-lr!), (14) 

where 
1 ~ E~ A=- 2 d ~-n2ab2 P P n2v3 

(£0 ~ 1 eV, v ~ 108 em/sec). (15) 

To find the density of states for electrons we 
shall proceed in an analogous way. Since we are 
interested in large momenta, we shall use formula 
(15) from [1J. We have 

dZ~1 > 1 \ dq x 2 ~ ---- d d --=-- d d de - 4n3ab2 •. P q!l de3(I) n 3ab'' . P q Y 
P>O 

where s = qy /p and allowance is made for the fact 
that we are interested in large momenta. 

The limits of the integral with respect to s are 
automatically determined by the condition for the 
surface E!1> = const to be open. According to [1], 

these conditions reduce to the requirement that 
both roots in the denominator of the last integral 
should be real. It was shown in [1] that open sur­
faces appear first along the directions qx = 0, 
qy = p, or qy = - p, depending on the values of 
the coefficients. When E exceeds the threshold 
there is a range of permissible values of s. We 
shall not describe all the possibilities or give all 
the calculations. In general the result is a com­
plete elliptical integral of the first kind, but we 
need only the limiting value at E-- Ec· This 
value is 

dZ~l) ~ _.:'!.. { lfal r I+ 6 sign(~- 6 sign r) }'/, 
de 2 I ~ - 6 sign r 1 

( e _.- {- + 1 ~ 1 - I~ - b signy I). (16) 

Substituting Eqs. (15), (16) into Eqs. (13) and 
(12) we obtain 

(cf. [']). It is assumed that the intrinsic spectrum has this 
property at all values of momenta. Second, the maximum pos­
sible values of the momentum for "open" surfaces do not ex­
ceed 1/3 of the reciprocal lattice period, i.e., they may be 
considered relatively "small." 

4)This expression is not in fact quite accurate. Open sur­
faces appear not immediately but gradually over the range of 
energies IYI (t../E0 ) 2 • Consequently I d~/dE \ for E = f- IYI 
does not become infinite but reaches values of the order of 
A(E0 / 11). However, this point is of little importance in later 
parts of our treatment. 
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11N = l_ A {'i3lll + o sign(~- o sign 1)}'/, T 
e ~ 1 ~ - o s1gn 1 I 

>< exp {(fL + + -1 ~ 1 +I [3- 6 sign r I)+}, 

11Nh =A v n I ~IT exp {___l-=1 ~l-=-1:':_}. (17) 

We shall consider two limiting cases. In the 
first case we shall assume that ~Ne and ~Nh are 
small compared with the number of carriers at 
T = 0, but at least one of these quantities repre­
sents the main part of the correction, i.e. 5> 

11Ne!N (0) ~ (T/ep) 2 or I'J.Nh(N (O) ~ (T/ep) 2 • 

From the condition of equality of the number of 
electrons and holes we find 

For the total number of electrons and holes we 
obtain 

(18) 

(19) 

The quantities ~Ne and ~Nh in the above equation 
are given by Eq. (17) with J.1 = J-1( 0 ). 

Now we shall consider the other limiting case 
when open surfaces are dominant: i.e., ~Nh r:::; Nh 
and ~Ne r:::; Ne. From the equality of the numbers 
of electrons and holes we find 

f - II I I ~- o si:m 11 
[L=-0-,-- ~ 

-+- T { 4 [n Ill I B- o sign II ]'1'} 
'2 111 3 ~T 1 , 3 l11+osign(~-osign1) ' 

(20) 

N = N = A{· II [:rt Ill [1/3 ill+ 0 sign (3- 0 sign 1)]]'/. r'l. 
e h V 4 ~ 1 i3- 0 sign II 

{ (2 Ill 2f I i3- o sign 11 ) 1 } 
X exp - ---:1 - 3 - 2 r · (21) 

Let us consider in greater detail the possibili­
ties of various laws being applicable. First it 
should be noted that all the characteristic energies 
of conduction-the Debye frequency wn, the Fermi 
energy EF, the powers of the exponential terms in 
Eqs. (19) and (22)-are of the same order of mag­
nitude. Furthermore the exponential laws repre-

SlAt present numerical values of the parameters are not 
available and, therefore, we cannot say which of the thres­
holds for the appearance of open surfaces is closer to fl(O). 

sent rapid variation and the estimates of the cor­
responding quantities require exact values of the 
powers. Finally the melting points of bismuth 
(542°K) and antimony (903°K) are of the same order 
of magnitude as the characteristic energies. All this 
makes it difficult to predict in which temperature 
ranges the different laws apply. 

APPENDIX (received April 5, 1963) 

Let us consider in which physical phenomena 
these effects may appear. It is very natural to 
assume that they may appear in conduction. How­
ever, this is not so. For a considerable number 
of carriers to appear at levels with open surfaces 
we need temperatures slightly less than the acti­
vation energies which appear in the powers of 
terms in Eqs. (17) and (21). These energies 
(- I y I ) are most probably of the order of several 
hundredths or tenths of an electron-volt, i.e., they 
are larger than the Debye energy of phonons 
(ll7°K). At these temperatures the resistance is 
due to the interaction between electrons and pho­
nons, the momenta of the latter being k- rr/a, 
where a is the lattice constant. On absorption 
of such a phonon electrons at levels with closed 
surfaces can undergo a transition only to another 
closed surface. This limits greatly the region of 
solid angles in the integral for phonon momenta 
and leads to the appearance of a multiplier of the 
order of ( EF /E 0 ) 2 in the probability for scatter­
ing and consequently to a corresponding rise of 
conductivity. There is no such limitation for elec­
trons at levels with open surfaces and consequently 
there is no such multiplier in the scattering prob­
ability. It can easily be seen that in the conductiv­
ity this compensates exactly the gain in the pre­
exponential multiplier in Eqs. (17) and (21) com­
pared with the number of electrons at T = 0. Since 
the exponential term is assumed to be small, the 
contribution to the conductivity will consequently 
be small. 

The presence of additional carriers obviously 
affects the optical properties of bismuth-type met­
als at low frequencies w < I y I in the region of 
temperatures under consideration. Since the car­
riers considered here obey the Boltzmann distri­
bution law for which an/ae: = -n/T and ae:/ap- v 
- 108 em/sec, it can easily be shown that in the 
case WT » 1, where T is the time between colli­
sions, the permittivity tensor Eik should have an 
additional term of the order of - e 2v2 ~N/Tw2 , 
where ~N is given by Eqs. (17) or (21). In the 
opposite case of WT « 1 the additional term is 
imaginary and of the order of e2v2 ~NTi/wT. 
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For the electrons considered the value of T is 
of the order of 1/T so that in principle we can 
have both cases. In the first case the ratio of the 
additional term to - N( 0 )e2/m *w 2, which occurs 
in Eik at T = 0, is of the order of (Eij/yT)e-UIT 
where U"' y, E 0 "' 1 eV. In the second case we 
have an imaginary term ~Eik"' i ( Eijy/T2w )e-DIT. 

For electrons at levels with closed surfaces 
T"' E5/y2T, as pointed out above. If we assume 
that w T » 1 ( E0 "' 1 e V), then the imaginary ad­
dition to Eik due to these electrons is of the order 
of max ( E5/y2, y2/w 2 )i/wT (this will be proved in 
a later communication). Consequently the ratio 
of this imaginary addition to the existing term is 
of the order of min ( Eh/T3, E~w2/y3T3 )e-DIT. 
According to the available experimental data 
Eij/y2 "' 100. 

Consequently the effects considered may be­
come quite noticeable, and even dominate the ef­
fect of electrons at the Fermi surface, at temper­
atures T "' I y 1. It must be noted, however, that 
the exponential laws represent rapid variation and, 
therefore, the actual magnitude of the effect de­
pends on the exact values of the activation energies 
or, in other words, the parameters of the spectrum. 
This is particularly important in view of the fact 

that the melting points of the metals under consid­
eration are of the same order of magnitude ( 542°K 
for Bi and 903°K for Sb). 
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