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The ultrarelativistic asymptotic behavior of the vertex function in quantum electrodynamics 
is evaluated in the "single-logarithmic" approximation by assuming relation (1) to hold be­
tween the momenta. The result is expressed by formula (20). 

l. In Sudakov's paper[!] the asymptotic behavior 
of the vertex function is obtained for the limiting 
case 

ln 1Pq/p2 I , ln /pqjq 21 > 1 
(1) 

in the approximation in which all the "doubly loga­
rithmic" terms of the type (e2 ln lpq/p2 lln I pq/q2 I )n 
are retained. In the same approximation Abrikosov [2] 

and Baier and Kheifets [a] have evaluated cross sec­
tions for certain scattering processes. 

For sufficiently high momenta "single-logarith­
mic" terms of the type e2 ln I pq/p2 I ( e2 ln I pq/p2 I 
ln I pq/q2 \)n etc. also become important. The pres­
ent paper is devoted to the calculation of the vertex 
function in the limiting case (1) taking into account 
both the doubly logarithmic and the singly logarithmic 
terms. The method of calculation developed for this 
purpose, which is a certain generalization of the 
"doubly logarithmic" method of Sudakov, can also 
be utilized for evaluating cross sections. 

We consider only the real part of the vertex func­
tion. Knowledge of the imaginary part of the corre­
sponding matrix elements is not essential in order 
to obtain the cross sections in the single-logarithmic 
approximation. 

2. We consider first those diagrams in which all 
the internal photon lines encompass the principal 
vertex (we shall call these the principal diagrams). 
Examples of such diagrams are given in the figure. 

The diagram r 1a corresponds to the integral 

In virtue of the inequalities (1) the mass of the elec­
tron is everywhere neglected. Following Sudakov[l] 
we represent k in the form 

k = u (p - ~q) + v (q - ap) + k .l• (3) 

where k1 is orthogonal to p and q and is spacelike, 
and a and {3 are chosen with the aid of the condi­
tions (p -{3q) 2 = 0, (q- c~) 2 = 0 from which we ob­
tain with sufficient accura~y a = q2 /2pq, {3 = p2 /2pq. 

As new variables we adopt u, v, z = - ki /2pq and 
the polar angle cp, which defines the direction of the 
vector k1 in the two dimensional plane orthogonal to 
p and q. In terms of these variables 

d4k = (pq) lpql dudvdzdrp, k2 = 2pq (uv - z), 

(p - k)2 = 2pq [(v- ~) (u -1)- z], 

(q- k) 2 = 2pq [(u -a) (v -1)- zJ, (4) 

where u and v vary from - oo to oo , cp varies from 
0 to 2rr, z varies from 0 to oo for pq > 0 and from 
0 to - oo for pq < 0. For the sake of definiteness we 
assume in our calculations that pq > 0; the result 
can be easily generalized to the case pq < 0. 

We consider the numerator of the integrand in (2). 
In averaging over the directions of the vector k1 the 
terms linear in kl will vanish, while the quadratic 
terms will turn out to be proportional to ( pq )z. Such 
terms are not singly logarithmic in the principal do-
main of small k. In this section we restrict our­
selves to the evaluation of the single-logarithmic 

(2) contribution of this particular region, and, therefore, 
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we omit k1 in the numerator. After this the numer­
ator effectively reduces to Ya • 4 ( pq) ( 1 - u) ( 1 - v) 
if we take into account the fact that r a ( p, q) is 
flanked both on the left and on the right by the elec­
tron propagation functions q/q2 and p/p2 respec­
tively, and if we neglect in comparison with pq 
terms p2 and q2 arising in the course of this 
calculation. 

Integration over cp yields simply 21r. As a re­
sult of this we can write for the real part of r 1a( p, q) 

Re riO=- e2 (2n)-2 rJI {(1 - u) (I - v}}, (5) 

where J 1 { } is determined by formulas (A.1) and 
(A. 7) of the Appendix. 

We now turn to r ~~. On writing in accordance 
with Feynman's rules the expression for r ~~ in 
analogy with (2), and on introducing in place of k1 

and k2 new variables in accordance with rule (3) 
we obtain an integral the denominator of whose in­
tegrand contains the factors 

(p - ki) 2 = 2pq [(vi-~) (ui- 1) - zi], 

(q- ki) 2 = 2pq [(ui- a) (vi- 1)- zd, 

(p- ki- k2) 2 = 2pq [(vi + v2 - ~) (ui + U2 - 1) 

- zi - Z2 - 2 V ziz2 cos ('PI -lp2}l, 

(q- ki- k2)2 = 2pq [(ui + U2 - a) (z,•I + V 2 - 1) 

- zi- z2 - 2 V ziz2 cos ('PI -lp2}l. (6) 

A new feature as compared with r 1a is the pres­
ence of the terms 2(z1z2 ) 112 cos (cp 1 -cp 2 ) = -2kfkf. 
However, detailed estimates show that in calcula­
tions of single-logarithmic accuracy these terms 
can be neglected. Qualitatively this is explained by 
the fact that in the principal domain of small vari­
ables the term (z 1z 2 ) 1/ 2 is of the same order of 
magnitude as z 1 +z2 only in the narrow region in 
which z1 "' z 2 and the effect of this is not logarith­
mic. 

By neglecting the terms indicated above and by 
subjecting the numerator to the same manipulations 
as was done in the case of r 1a we obtain the follow­
ing results: 

Re r~!/ = (- 1)2 (e/2Jt)4 rAl) {(1 -vi) (I -VI- v2) 

(7) 

Similarly we have 

The definition of J~t> { } is given by formula (A.1) 
of the Appendix. 

In the general case we have 

n-m 

X fl (1 - Vp, - o o o - Vps) 

S=l 

m-1 

X [[ (1- Vp,- o o o- Vpn-m+r-Vn}}, 

r=o 
(9) 

where the numbers Pi and the number m both de­
pend on the number of the permutation P of the 
right hand ends of the photon lines (we regard their 
left hand ends to be fixed ) , and m is the number of 
brackets in the numerator containing Vn· 

In the single-logarithmic approximation we must 
keep in the numerator only the variables vn and Ukp 
(where the subscript kp depends on P, i.e., on the 
form of the diagram ) , which appear in the denomi­
nator of the integrand in the combinations vn - {3 

and Ukp- a only once. Moreover, we have 

containing a certain lp which depends on P. 
The value of the integral appearing in (10) is 

given by formula (A. 7) of the Appendix. The result 
is independent of P and, therefore, the summation 
over P reduces to multiplication by n!. Moreover, 
in summing over all values of n we obtain 

Re fa= rJJ- :2 In I()(~ 1} 
l _n; 

x exp (- ~~ In I a I In I ~ 1) + 0 ° 0 (11) 

The repeated dots denote the missing contribution 
from the region of large momenta of the virtual 
photons. It is evaluated in the next section. 

3. The contribution of the principal diagrams to 
the single-logarithmic approximation comes not only 
from the region of low momenta of virtual photons 
but also from large momenta. We have in mind that 
region in which the integrals diverge, and the corre­
sponding contribution arises after regularization. 
We denote this contribution of the diagram rh~) by 
Lh~). It is clear that for a diagram of the first order 
in r j(J' we have 

e2 c d4k 11'-kr)zri'-
Lia = Jt[ ~ (2:rr)" (p- k)2 (q- k)'k2 0 

By regularizing this expression in accordance 
with the usual rules C4J it can be easily shown that 

(8) with logarithmic accuracy we have 
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(A. is the photon "mass" ) . 

(12) 

(13) 

It can be easily shown that in the n-th order of 
all the n! diagrams rf5) a contribution resulting 
from large momenta of the virtual photons will be 
given only by the ( n -1) ! diagrams in which the 
uppermost photon line does not intersect the other 
lines, and it is this particular line that is character­
ized by the large momentum, while the momenta of 
the other photon lines must be small. In such a case 
we have 

Summing over all such diagrams and utilizing 
(11) and (13) we obtain 

(14) 

e2 { I m21 /,,2 } ( e2 ) = 4n In pq - 2 In m2 exp - :2n In I a lln I~ I . (15) 

4. We now consider diagrams obtained from the 
principal diagrams ( cf., the figure) by the insertion 
of an electron loop into one of the photon lines. Such 
a line corresponds to the propagator function 

D(2) (k2) = ~ I (k2) ( 0 __ k 1, kv \ 
p. \1 Jt k2 p. \1 k'!. ) ' 

1 

1 • l k2 J I (k2) = :T ~ dz (1 - z2) In 1 - 4m2 (1 - z2) • (16) 
0 

It can be shown that in using the method of inte­
gration adopted by us ( cf. Appendix) the single­
logarithmic contribution comes from the imaginary 
part I( k2 ), which is given with sufficient accuracy 
[cf., for example, [5J, (32.14)] by -i7r8(k2 -4m2 )/3. 
Below we shall evaluate the contribution of the term 
~ 6 J.l.V· An analogous investigation shows that the 
term ~ kJ.lkv gives no contribution to the single­
logarithmic approximation. 

We consider first of all the diagram obtained by 
the insertion of a loop into ria· It corresponds to 
the integral ( y = 2m2 /pq > 0) 

e4 
ll --- " lo -- - 1 o J2 :11 2 

-00 

du dvfl (uv- z- rl 
[(v- p) (u -1)- z] [(u - :t) (v- 1)- z] (uv- z) · 

(17) 

In the principal region ( 1 » I v I » {3, 1 » I u I 
» I a I) we can neglect the quadratic terms and z 
in the first two factors of the denominator. Integra­
tion over z yields 8(uv -y) ln I uv/y 1. As a result 

of this we see that II1a is obtained from ria by the 
following replacement 

6 (uv) __. (e2/3n) 0 (uv - y) In I uvly I 

in the integral J 1 { 1}. Similarly, the diagram ob­
tained by the insertion of a loop into the i-th photon 
line of the diagram rh~) corresponds to the ex­
pression obtained from rh~) by the replacement 

6(uivi) __. (e2/3n) 0 (uivi- y) 1n \ uivjy I 

in JhP){ 1}. 
The subsequent integration can be carried out 

particularly easily when I y I ~ I a/31. In this case 
we can omit y in 8 ( UiVi - y). Summation over i 
from unity up to n now leads to the integral ob­
tained from JhP) { 1} by adding the factor ( e 2 /37T) x 
ln I u1v1 ... unvn/Yn 1. In virtue of the symmetry of 
the numerator of the integrand the integral is inde­
pendent of P, since for any P one can perform an 
interchange of the variables Uk - Ui which is the 
inverse of P. Therefore one can take the lines in 
the order corresponding to a ladder diagram, and 
then the summation over P reduces to multiplica­
tion by n!. 

Finally the contribution IIna of all the diagrams 
obtained from all the rh~) by all possible insertions 
of an electron loop will turn out to be the product of 
n! and the expression obtained from r~iJ. by the ad­
dition of the factor (e2/37r) lnlu1v1 ... unvn/Ynl to 
J ::f > { 1} . The evaluation of the integral is not com­
plicated and leads to the following result 

. e2 I :t31 ( e2 ) n 
Tina = y; 6:n (n _!)!In. -;f , - L:rt In; a Jln I~~ . (18) 

Insertions of two or more loops simultaneously 
need not be taken into account since they lead to a 
decrease in the logarithmic order by two or more. 

The total contribution of the polarization of the 
vacuum to the single-logarithmic approximation is 
consequently equal to 

II -- ~ II - e' 1 , . I 1 ' r> I I I :tpl 
0 -- ..;....~ ' no -- - Yo l2rr" 11 : a n i ,, 11 I r' 

n 

X exp (- ~·: 1n i a i In \ r1 1). (19) 

5. Insertion into the principal diagrams ( cf. the 
figure) of a photon line which does not encompass 
the main vertex leads to single-logarithmic dia­
grams only in those cases when this line either does 
not encompass any side vertices (electronic self­
energy part), or encompasses only one side vertex 
(vertex part). In this case it is this side photon 
line that must carry a large momentum, while the 
remaining proton lines must carry low momenta. 
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+ z1 ~:~ . . . + Zk - i£, 

However, it can be easily shown that the single­
logarithmic contributions of such diagrams mutu­
ally cancel. This circumstance is related to Ward's 
theorem. The insertion of two or more side photon [up) = (up, + · · · + uP,- a) (1 - Vp,- · · · - vp,) 

lines diminishes the logarithmic order of the dia­ + Zp, + ... + Z.p,- ie, (A.1) 
grams by two or more. 

Detailed estimates of diagrams obtained from the where the symbol P denotes a permutation of the 
principal diagrams by the insertion of "parquet-like"right hand ends of the photon lines which converts 
parts show that such diagrams also give no contribu- the n-th order "ladder" diagram into the given one; 
tion to the single-logarithmic approximation. Here the nature of this permutation determines the values 
we shall confine ourselves just to this remark since of the subscripts Ps which can vary from unity up 
the corresponding calculations are fairly awkward. to n; the curly brackets can contain functions of 

6. We have carried out all the calculations using the type 1, (1-ui)(i -Vk), zz etc.; the variables 
the photon propagator function in the form k-20 v Uk and Vk vary between the limits (- oo, oo ), while 
which corresponds to the choice dz = 1 for the fon- Zk varies between the limits ( 0, oo ). 

gitudinal part. It can be easily shown that the choice We first of all consider the simplest integral 
of other numerical values for dz will change only the 
contribution of the region of large momenta, viz., the J 1 {1} 

result (15) will simply be multiplied by dz. 1 i du dv dz 
On taking this remark into account and on com- = Re j( r:u=v-----=-z--:-,-~=·E)"[i7(v::-_-----;~")7(1'--u.c-)=:i-:._:z::..:_--=::i,_e];-;-[(.,--u---a-,-)-:-:(1---v.,--) ~--,-:-z----c-ie] 

bining (11), (15), and (19) we obtain the following = :rt (' du dv f 8 [(v- ~) (u- 1)]- 8 (uv) 

final result J l [(v- [3 7 ~u)- (u- ct --T- av)] (v- [3 7 [3u) 

f e2 r e' ( I 2 ) Re ro (p, q) ~=Yo ,I--;-,-- In I a? I +-,- dt In I y 1- 2ln ~ 
l LIT = ~ 

- 1 :~, In I a [In I [3. In 10/} exp (- S~ In I a[ln 1 [3 i), 

lrl~lan 
(20) 

In the calculations we have taken pq > 0, but the re­
sult (20) is valid also for pq < 0. 

The contribution due to the polarization of the 
vacuum (19) is calculated for I y I ~ I af31. The case 
I y I » I a(3 I compatible with (1) does not lead to such 
simple expressions and requires special considera­
tion. 

The authors are deeply grateful to A. I. Akhiezer 
for his continued interest in this work and for dis-
cuss ions. 

APPENDIX 

We shall now describe the method of calculating 
in the single~logarithmic approximation the inte­
grals associated with the principal diagrams. In 
doing this we take into account only the contribution 
of the principal region where all the variables of 
integration are small. 

The general structure of the real part of the in­
tegrals corresponding to a certain n-th order dia­
gram can be expressed in the following form 

k=l S=-1 

8 [(u- a) (V- 1)] --6 (au) 1 + [(u- ct ~- ctv)- (v- [3 + ~u)] (u- a 7 ctv) f ' 

{ 1, x> 0 
0 (x) = o, x < o · 

The integrand has no singularities only if taken 
as a whole, but if we interpret all the integrals as 
principal values, we can evaluate each term sepa­
rately. 

We pick out from the whole region of integration 
the square (-1 :s u :s 1, -1 :s v :s 1). It can be 
shown, and this is a characteristic property of all 
the integrals of the type JhP) { 1}, that: 1) the re­
gion outside the square (- 1, 1) gives no single­
logarithmic contribution; 2) the terms with 
8[(v-(3)(u-1)] and e[(u-a)(v-1)] give no 
contribution even inside the square; 3) in the term 
containing 8 ( uv) we can neglect both av and (3v. 

As a result of this we obtain 

1 1 
• (' 8 (uv) 

1 1 {1} =:rt ~du .\dv(u-ct)(v-[3) 
-1 -1 

= 2:rt In :a ; ln · ~ . + 0 (1). (A.2) 

We now consider JhP){(1-vnlm} where m co­
incides with the number of factors in the denomina­
tor of the integrand containing the combination 
un-a. If Vn occurs in the numerator then the in­
tegration with respect to vn ceases to be logarith­
mic and must be carried out more accurately. The 
principal contribution now comes from the region 
where vn is finite, while the remaining variables 
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are small so that they can be neglected in compari­
son with unity and vn. For the integration with re­
spect to Zi, ui, Vi for i ,.; n the method which was 
used for the evaluation of J 1 { 1} remains valid, 
i.e., we can integrate over Ui and Vi using princi­
pal values within the square ( -1, 1 ), and in this 
case in the integral over Zi an effective contribu­
tion is given only by the pole Zi = UiVi, as a result 
of which Zi can be rejected in advance everywhere 
except in the principal bracket (uivi -zi + iE), and 
after this the integration over Zi is elementary and 
yields - i1r8 (UiVi ). The logarithmic contribution 
from the integration over un also comes from the 
region of small values of un, therefore the effec­
tive region for un is also ( - 1, 1 ) . 

After carrying out the operations indicated and 
making the allowable approximations we can write 

(P) ( 1 )"' - n n-1 \ (1 )m • d d d Jn { -Vn },.=n.e:rt J -V 11 ( Urz Vn Zn 

n-1 

X n 0 (uiv;) dui dvi { (UnVn- Zn + ie) 
i :::....:1 

n n-m 

>< lJ (vt +· .. +vk- ~) II (up,+ ... +up,--a) 
k=1 S=l 

m-1 

X n. [(Up, + ... + UPn-m+r + Un- a) 
r=O 

\-1 
X (1 - Vn) -1- Zn- ie] f , 

where the integration is taken over the region indi­
cated previously. 

Without reducing the degree of accuracy we can 
simplify the expression obtained by leaving in each 
of the curved brackets only that variable Vi or Uk 
(for i, k = 1, 2, ... , n- 1) which appears in the de­
nominator a smaller number of times, provided that 
in doing so we also change the limits of integration 
by taking them to be equal to (vn_2, 1 ), (vn-a• 1 ), 
... , (vi> 1), ({3, 1) respectively for Vn-1> vn_2, 

... , v2, vi> and similarly for the variables up. On 
carrying out the integration over Zn we obtain 

n-1 n-1 n-m 

J~P) {(1 - Vn)'~} == :rt" \ (1 - Vn)'" dun dvn n 0 (uivi) dui dvi { (vn-1 + Vn) n Vk IT u Psr 
t i =-1 k=l s-=1 

m-1 

r=O 

The factor ( 1-vn)m-1 in the denominator com­
pletely cancels a similar factor in the numerator. 
This cancellation is not accidental,' it guarantees 
the absence of a singularity at the point Vn = 1. 
Now there remains in the numerator only 1-vn. 
Integration over un and vn gives us with the re­
quired degree of accuracy 

-c 2 (In [ Vn-l ! ~- 1) ln; Up[. 

Therefore we have 
fl-1 

J:/') {(1 - [.',,)'"} ~ 2:n:" \ n 0 (uiv,) dui dui (ln I Vn-l I + 1) 
l ~-:=1 

n-1 ;;-·-•n m-1 ]n I u 1 

' l-1 I Pn-m+r, 

X tfll u•, . ;~Il u fls i I~) ( -- l/Pfl-111 Tl )' "Pil-lll+r+l ... UPn -1 

A contribution to the single-logarithmic approxi­
mation will be given only by the first two terms of 
the sum (r = 0, 1 ). Taking into account the fact that 
in the given integral we can make the replacement 

n-1 n-1 

i=l i=l 

and writing out explicitly the limits of integration 
we obtain finally 

= (2n)" n cr n >-' + ~ >-' {.I "I II "IQI In"INiln"-1 IQI} 
n! n! n! (n- 1)! 

+ 0 (Inn-1 I a linn-! I ~I)· (A.3) 

The result is independent of m and p, i.e., it is the 
same for all n-th order diagrams. 

In accordance with the above derivation we can 
evidently identify the first and second terms with 
the corresponding parts of the original integral: 



1140 S. Ya. GUZENKO and P. I. FOMIN 

J<,:> {(I - Vn)rn-l} = (2n)" Inn I a [In" I~ [In! n!, (A.4) J~P) {(1 - Vn)m (1 - uk/P} 

J<,:> {- Vn (1 - Vn)m-1} = (2n)" Inn [a I Inn-1 I~ [In! (n- 1)!. 

(A.5) 

From the derivation of (A.4) it can be easily seen 
that the principal contribution to this integral arises 
from the region of small values of Vk in which 

J<,:> {(I - Vn)m-1} = J~P) {1}. 

In carrying out similar calculations it is more 
convenient to make use of this fact from the begin­
ning. 

On taking into account the results obtained we 
can write with single-logarithmic accuracy 

J<,:> {(1-vn)m (1-uk/P} =J<,:> {1-Vn (1-vn)m-l 

(A.6) 

On the basis of the results (A.4) and (A.5) and of 
symmetry considerations with respect to a and {3 
(A. 6) enables us to write 

= (2n)" lnn-1 [ a [lnn-1 f ~[(In I a [In f ~I +n In I a~/) In! n!. 

(A. 7) 
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