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The effect of forced oscillations on diffusion of plasma across a magnetic field is con­
sidered for the particular case of a fully ionized cylindrical plasma column in a strong 
magnetic field with a random fluctuation source at the plane z = 0. 

l. It is well known that plasma oscillation can lead 
to enhanced diffusion across a magnetic field. This 
effect is found most simply from an analysis of the 
motion of individual particles in a fluctuating elec­
tric field; [i-2] it is found, in particular, that the 
random motion of an individual particle can be de­
scribed in terms of diffusion motion with some ef­
fective diffusion coefficient. 

Unfortunately, in certain cases [2- 4] the diffusion 
coefficient obtained in this way has been applied to 
the plasma as a whole. In doing this, however the 
implicit assumption is being made that the motion 
of an individual particle is not correlated with the 
motion of the other particles; the error is the 
same as though one attempted to assign to an en­
tire plasma a diffusion coefficient computed from 
the motion of an individual ion that diffuses pri­
marily by ion-ion collisions. 

In the present work, using the example of a 
plasma column with an external source of random 
fluctuations, it is shown that the enhanced diffusion 
can result only from fluctuations in which both 
electrons and ions participate. In this case the two 
diffusion fluxes are equal. 

Specifically, we consider the following problem: 
a cylindrical column of collisionless plasma with a 
radial density gradient and uniform temperature is 
located in a strong longitudinal magnetic field H 
directed along the z axis. In the plane z = 0 this 
column is in contact with a "cathode" which, on 
the average, emits exactly the same number of 
electrons and ions that reach its surface. In addi­
tion, at the cathode we specify random fluctuations 
of the potential jump associated with the double 
layer; these modulate the electron and ion streams 
leaving the cathode and thus produce waves in the 
plasma. 

If the correlation length of the potential fluctua­
tions (in radius and azimuth) is appreciably larger 
than the mean ion Larmor radius and if the fre­
quencies of the fluctuations are appreciably smaller 
than the ion cyclotron frequency, only drift waves [5] 

can propagate from this noise source. Under the 
conditions considered here these waves are weakly 
damped. We solve the problem of propagation of 
small amplitude waves by a Fourier transforma­
tion in time and a Laplace transformation in z; 
then, using the quasilinear approximation we com­
pute the electron diffusion flux associated with 
these waves. 

The expression obtained for the diffusion flux 
shows that near the source (if the density gradient 
is large enough) the diffusion flux is proportional 
to 1/H and that the distance over which the en­
hanced diffusion occurs is proportional to H. These 
results are of interest in themselves because under 
actual conditions fluctuations of the double layers 
at the anode and cathode can serve to excite exter­
nal oscillations. 

2. We first consider the propagation of particle 
density fluctuations and fluctuations in the electric 
potential from the plane z = 0 given the boundary 
condition 

cp (z = 0, r_]_, t) = o (r_!_, t). (1) 

Here, the perpendicular sign denotes the component 
transverse to the magnetic field. 

If the plasma is assumed to be stable small os­
cillations can be analyzed in the linear approxima­
tion. We consider the linearized kinetic equation 
for the electrons or ions: 

ar, _,_ v of, -t- _!__ [vH I of, = _!_ V of, . 
0/ I Or me OV m cp OV (2) * 

We use a Fourier transformation in time and a 
Laplace transformation in z: 

cc 00 

cp (r_!_, k, w) = ~ dt~dzcp (r,t)e-lkz+lo>l, (3) 
-co 0 

where k is complex, k = k' + ik", k" < 0 and w is 
real so that all quantities are stationary random 
fluctuations in time. Thus 

*[ vH] = v x H. 
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[ i (kvz -w) + V_1_ __}!___ + _e_[vj_H]~J {1 (r_1_, v, k, w) 
cr j_ me uv j_ 

- vzfr (z = 0, r_1_, v, w) 

e [ "k ofo ofo a J =- t ()+y-a~ qJ(rL,k,w) m vz v j_ r j_ 

--"-a(r_l_ w)dfo. 
m ' dvz 

The boundary conditions on f1 and cp appear 
explicitly in (4). When Vz > 0 we assume that 
f1 (z = 0, r1, v, w) = 0; when vz < 0 obviously 
boundary conditions do not affect f1 in (2) and 
(4) and are omitted. 

(4) 

Assume that in the cylindrical coordinate sys­
tem (r, a, z) the density gradient is in the direc­
tion of r. We introduce in (4) the new variables: [G] 

Vr (T) = V_j_ COS (wH T +a), Va (T) = - V_j_ Sin (wH T +a), 
T 

rj_ (T) = rj_ + ~ Vj_ (T) dT = rj_ + R. (T), 
0 

where R( r) is of the order of the Larmor radius. 
Then, multiplying (4) by ei<kvz-W)T we see that 
the left part becomes 

Q lf ( ( ) ( ) k ) i (kV,-W) T dT 1 f j_ T , V T , , W e - j. 

Integrating (4) with respect to dT from 
sign v z • oo to 0 (taking account of the sign of k", 
the imaginary part of k) we have 

fr (r_1_, v, k, w) 

0 

e (' { [ iJfu a "k dfo J k = - '· ~~ ~-- + l - qJ (r, (T), , w) 
tn ,. OV j_ (T) dr j_ dvz -

sgn vz ·co 

_ ( () )Ofo} i(kvz-w)'dT arl.T,w~ e . 
uVZ 

(6) 

When Vz < 0 the last term of the integral in (6) is 
omitted because of the boundary conditions. We 
shall limit ourselves here to low-frequency oscil­
lations w « wH and assume that the Larmor ra­
dius of the ions is small compared with the wave­
lengths of the transverse waves. 

As is well known, in this case the stationary 
function must be of the form 

fo = fo (r + Va/WH, v3_, Vz); 

integrating (6) with respect to dv, in the linear 
approximation in 1/WH we haveC5J 

00 

n(rJ.,k,w)=~f1 dv =~-kqJ(r_1_,k,w) \ 
-00 

ic O<p (r j_• k, w) .a 00
\ fo (r, vz) 

-- - dv 
H r iJcx dr , kv z- w z 

-00 

(7) 

(8) 

In the last term in (8) the limits of integration are 
established from the condition that when v z < 0 
the boundary conditions in (4) must be omitted. 

Expanding (8) in a Fourier series in a, we have 

ns (r, k, w) 

( cs 1 a \ . = e kftz + -H - -d ftr 1 (/!s (r, k, w) + L eft0<1s (r, w), (9) e r r , 

where s is the number of the Fourier component. 
Here we have introduced the notation: 

1 00~ ofo (r, vz)/OVz 
ftz =- k dvz. 

n~ vz- w 
(10) 

-00 

r fo (r, vz) d 
ftr = .\ kv - w Vzo • z 

(11) 
--co 

(12) 
() 

The integrals in (10)-(12) are defined in the 
lower half plane of k ( k" < 0, w real) and are 
analytically continued into the upper half plane of 
k. 

We write 

fo (r, Vz) = N(r) }/minT exp (- ~1) . 
It then follows from (10), (11), and (13) that 

~ _1_ _i_ - 2 (k !!__) 
eH r or ftr - w ftz + T • 

cT 1 a InN y = eH r ----ar- . 
Below we denote I e I by e. 

(13) 

(14) 

(15) 

Since we are only interested in low-frequency 
oscillations the plasma can be regarded as quasi­
neutral ni =fie· Then from (9) and (14) 

11~ + 11~ 
{/!s(k, w) = - . ias (w), (16) 

(1 + sr;/w) kl1~ + (1- sr.lw) kl1~ 

n,1(k, w) = e (1 + syJw) kft;(/!5 + (NesyJT,w)qJ5 + ief..l~05(w), 

(17) 

(18) 

3. To compute the mean radial velocity Vr we 
multiply by mv a and integrate with respect to dv 
the equation for the mean distribution function: 

vofo _, _ _:_[vH] ofo = .!_(vmaf,), (19) 
Or I me dv m 'I' OV 

whence 

1 I c <O<p > Vr = N ~ Vr fo dv =- NHr OrJ. n • 
(20) 
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It is evident from (14) that the condition of neu­
trality of the plasma flow (equality of the electron 
and ion fluxes NV re and NV ri ) is satisfied in the 
general case so long as (V2cp 8cp/8a) = 0; this con­
dition holds for all random functions of a that are 
homogeneous in a, as is the case for cp in the 
present analysis. From this condition and (20), 
in view of the relation ne = V2cp I 47Te + ni we find 
Vri = Vre· 

We assume that a ( r 1• t) is a stationary random 
function of t and a. Then 

(cr; (r, w') cr, (r, w)) =a; (r, w) 6 (w + w') fL;, ,. (21) 

Substituting the Fourier expansion for n and cp we 
have from (14) 

co 

V, (r, z) = N~ + ~ s ~ <Cfl~s (r, k1 , - w) n, (r, k2 , w)) 
S=-00 

(22) 

In computing (22) it will be found convenient to 
use the density expression (18). Substituting (13) 
in (22) we have 

V ce i "'-' I ( sr. )' • r (r, z) = - NH r ..L.J s.) I- w k2f.tz (k 2 , w) 
s \ 

X (Cfl~s (k1,-w) cp,(k2, w)) ei(k,+k,)zdk1 dk2 dw 

+ N~ + ~s ~f.!.~ (k2, w) <IP~s (k11 -w) cr, (w)) 
s 

(23) 

It is evident that in the first term we need only take 
account of the imaginary part of J.t~. The remain­
ing terms vanish because they are odd with respect 
to s and w. 

® 
ll 

We consider only those poles for which the imagi­
nary part of k is small since it is these that make 
the primary contribution to diffusion at large dis­
tances from the plane z = 0. In this case we can 
limit ourselves to the region 

(25) 

where the following expansion holds: 

{ -
1 e ~ 1 . . 11me 1 w 1 me w 2 

Nkf.tz ~-T- 1 2T k'7"exp {~2T (.k)}' 
e e e e 

fLe 1 
R.e tJ z-2T k' 

e 

Substituting this expansion in the denominator 
of (16) we find that it vanishes at the points 

k = k' + ik" = ± w V m;ft,!Te 

+ i V nm.I8Te I w I exp (- m.'fr,/2m;) 

+ iV nm;/8T; I w I Jf-fr. exp (- Teftsi2T;); 

tt. = (w - sr.)/(w + sr,.). (27) 

In (27) we can set up rather sharp boundaries 
in w between which k" « I k' I; specifically, 

In accordance with the discussion leading to (20), (1 + (1 + T;IT.) 2m.lm;)sre = a1 sr. < w < a2s r. 
we note that the difference between (23) and the = sr. 5T;/(4T1 - T.). (28) 
analogous relation expressed in terms of (17) is 
only an apparent one. They are essentially the 
same, since ni = ne. 

We now consider the individual terms in (23). 
The function J.to appearing in (23) [through (16)] 
is expressed as a singular integral (12) with one 
finite limit. Hence, its imaginary part suffers a 
discontinuity at the real axis of k when k' > 0, 
w > 0 or k' < 0, w < 0 (i.e., for diverging waves); 
this jump is given by: C7J 

q/2~m ~~d exp{-z; (: )} (24) 

Consequently, the integration in (23) in the com­
plex planes of k1 and k2 is conveniently taken 
over the contours a or b shown in the figure. 

Furthermore, (16) has poles in the upper half 
plane of k; these can make a contribution in (23) 
in the integration aloong the contours ( cf. figure). 

In this frequency range (27) can be replaced approx­
imately by 

k = ± w Y m;-fr,!Te + i Y nm.I8Te J w J. (29) 

We see that contributions in (23) come only from 
the residues at the poles and the jurp.p at the branch 
cut (24). For integration along the contour shown 
in the figure it can be shown that the basic contri­
bution comes from the product of the residues at 
the poles of the first term. The other terms are 
either odd in ( w, s ) and give zeros or, like the 
product of the branch cut and the residue at the 
poles in the second term in (23), are proportional 
to ·i and need not be considered. 

We compute the product of the residues in the 
first term in (23) by substituting the Green's func­
tion (16). The required parity in ( k, w) is acl).ieved 
here by the odd parity of the product Re [ J.t~, J.t~] 
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with respect to ( k, w) [ cf. (26)], which is one of 
the consequences of the difference of the interac­
tion between converging and diverging waves with 
particles in the phase velocity region in (28). In 
the numerator a contribution comes only from the 
expression 

k2 Im [f1~ (k2, w)l Re {fl~ (k1,- w) fl~ (k2, w) 

+ fl~ (kl, - w) fl~ (k2, w)}. 

From a circuit of the poles in (29) we have 

r n"me ce 1 00 
\ (w + sr,.)' 

v r = - v 2m, HT. r ~ s " I w I (w- srel 
s=-oo ls 

X exp(-V ~;:I w! z) a~ (r, w) dw, 

(30) 

(31) 

where Zs denotes the range of integration in (28); 
us ( w ) is the boundary value of the Fourier com­
ponent of the electric potential cps. We assume 
that the oscillation spectrum of the electric field 
at the boundary is independent of s and w over 
some range of variation of w and s; specifically, 

a~(r, w) = r2£ 2/s2 Q, 1 < s< S, 0 < 00 < Q, (32) 

and that the spectrum vanishes for large values of 
s and w. Here, Q is the maximum frequency of 
oscillation at the boundary while S is determined 
by the minimum scale length of the correlation o 
or, if y is large enough, by the quantity Q/ye 
[cf. (28)] i.e., S = min(Q/ye, r/o). 

Substituting (32) and (28) in (31) and making the 
substitution of variables w = syex we have 

S a, 

V ( ) ___ _ ( :!.n5me ce£2 'V ~- (x + T,!Te) 
r Z, r -- l; _____ rye .LJ 

Jl m 1 lfT/J. s=la, x(x-·1) 

(33) 

The expression in (33) increases with increasing 
Te/Ti because the upper limit a2 increases. This 
is because ion acoustic waves can be excited when 
T e /Ti is high enough. 

We consider the case Ti = T e = T. In this case 
the basic contribution in (23) comes from the lower 
limit of w. Hence summing over s we write 

- ,. (32.n5me ce£2 ~ dx 
NV,-- N y-m-.-HTQ ry \ x-1 

t 1+4m·~ /mi 

exp f- V nmJ.!.T rzx}- exp f- S V nm.J2Trzx} 
X . 

· I - exp {- V nm.I2T rzx} 
(34) 

When -./ 1rme /2T yz « 1/S (34) becomes 

V32n5m (mi ) ceE• 
NV,=-N --" ln m HTQ ryS, 

tn1 e , 
(35) 

where, in place of s, we must substitute the 
smaller of r/o or Q/y. When 1/S « hrme/2T yz 
« 1 the diffusion flux is 

V-64n5 ( m,) ce£2 r 
NV,=- N -T ln - -Hl'l-. 

nzi me 1 i::l" z 
(36) 

As -./ 1rme /2T yz increases further the diffusion 
flux falls off exponentially with exponent 
--./ 1rme /2T yz. 

Using (15) we can estimate y ~ PiVi/a2 where 
Pi is the Larmor radius, a is the characteristic 
scale size of the inhomogeneity and Vi is the ion 
thermal velocity. Thus, the exponential decay in 
Vr starts when z/a > -./mi/me a/piS, that is to 
say, at a rather large distance from the cathode. 

All of our calculations hold in the wave region 
I k' I » k'. Hence, the results apply only when 
z > 1/l k' 1. Since the largest contribution to dif­
fusion comes from oscillations characterized by 
w ~ sy [ cf. (28)], k' can be estimated as follows: 

, v- m, w - sr. -. I me n k = w - ---~w V --;-~-, 
T w + sr1 T ve 

where Q is the highest frequency so that z .<: ve/Q. 
If Q ~ WHit then z .<: -./mi/me Pi· 

4. Thus we have shown that far from the plane 
z = 0 [at which the random noise source is lo­
cated], when Ti = Te the enhanced diffusion is 
caused only by drift waves, [5] which can propa­
gate in an inhomogeneous plasma. These waves 
are absorbed by the electrons as a consequence 
of Landau absorption (29). It is precisely by vir­
tue of this absorption that the electrons can dif­
fuse across the magnetic field. 

The mechanism responsible for ion diffusion 
can be established from the following simple con­
siderations. Since the phase velocity of the waves 
treated here is much greater than the ion thermal 
velocity all the ions will execute oscillations along 
the magnetic field with the same amplitude ~z 
= - eEz /miw2• Consequently the electric field 
acting on the ions in the transverse direction will 
be E1 = E1(z + ~z) ~ E1(z) + ~zdEl(z)/dz. 
Whence we find that each ion on the average will 
drift across the magnetic field with a velocity 

V - c < E l > -- _.!:_ _e_ / E ~ j_ ) 
r - H -- H m1w" \ z iJz 

c e a 0 0) =- H --2 a(EzEj_' m1w z 

where E0 is the amplitude of the electric field os­
cillation, that is to say E = E0 exp (is a - iwt + ikz ) ; 
the angle brackets denote time averages. 
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Thus, the mean (diffusion) ion velocity is also 
proportional to the wave absorption although the 
ions themselves do not participate in the absorp­
tion. The calculations given in this work show that 
the diffusion fluxes of the ions and electrons are 
exactly the same, being given by a common ex­
pression (33). For certain values of z this for­
mula yields the simpler expressions (35) and (36). 
It is evident from the basic expression (36) that 
there is a region of z, the boundaries of which 
depend on the density gradient, for which the dif­
fusion flux is independent of 8N/8r and propor­
tional to 1/H. We note that the diffusion flux falls 
off as T-1• This is explained by the fact that in 
the region (25) the electron absorption is propor­
tional to T-312 [ cf. (26)]. 

The author is grateful to B. B. Kadomtsev for 
directing this work and to M. A. Leontovich and 
V. D. Shafranov for valuable comments. 
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