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A method for the statistical description of the motion of fluid particles in turbulent flow is 
proposed, based on the decay law for equilibrium velocity fluctuations and the associated 
Langevin stochastic equation. The decay law is generalized by taking into account the in­
ternal time scale of the fluctuations; this ensures the existence of finite accelerations. In 
contrast to the Brownian movement, in turbulence theory interest attaches to the correla­
tions for periods that are small compared with the relaxation time of the fluid particles 
and for distances that are small compared with the mixing length (analogous to the mean 
free path of a molecule ) . Consideration of such time intervals and distances yields both 
the well-known relations derived in similarity theory (particularly the %-law ) and some 
new results, the correlation functions of the relative motion of fluid particles. Coefficients 
relating the characteristics of single-particle and two-particle descriptions of turbulence 
are also determined. 

A well-developed turbulent fluid flow is a system 
with a very large number of degrees of freedom; 
turbulence must therefore be investigated mainly 
by statistical methods. It may be considered that 
the basic laws of turbulent flow do not depend on 
the detailed structure of the Navier-Stokes equa­
tion. The most important characteristics of this 
equation are its nonlinearity, which ensures an 
exchange of energy between movements of different 
scales, and the existence of viscosity as a dissipa­
tive factor. 

In [1] Kolmogorov advanced the similarity hy­
pothesis, according to which the structure of turbu­
lent flow on scales that are very small compared 
with the external turbulence scale L is determined 
by only two parameters, the kinetic energy of dis­
sipation E and the kinematic viscosity v. The 
similarity hypothesis enables us by dimensional 
reasoning alone to obtain many results, the most 
important of which is the Kolmogorov-Obukhov 
%-law. [ 1•2] 

In the present paper turbulence is investigated 
by using the statistical description of the time 
evolution of fluctuations, a method developed in 
molecular statistics (in the spirit of the theories 
of Langevin[3] and OnsagerC4J). It has been pos­
sible, starting with the decay law of equilibrium 
fluctuations and the associated Langevin equation, 
to derive relations arising out of the similarity 
hypothesis (particularly the %-law) together with 
several new relations that cannot be written on the 
basis of dimensional considerations alone. 

We note some of the fundamental aspects of the 
way in which molecular statistical methods are ap­
plied to turbulence. 

1. It is more convenient to start with the La­
grangian description of turbulence, excluding the 
convective term in the equation of motion. It is 
also easier to select individual degrees of freedom 
-the coordinates and velocities of specified fluid 
particles that can be followed -and to account for 
all other degrees of freedom statistically. 

2. The relaxation time for the velocities of fluid 
particles in turbulent flow cannot, as a rule, be 
considered small; also, the mixing length (which 
is analogous to the mean free path of a molecule) 
is comparable to the dimensions of the system. On 
the other hand, in molecular statistics the space 
and time scales of the fluctuation field are small. 
In turbulence theory we are therefore interested 
in different time and space intervals; this leads to 
qualitatively different laws. 

3. In molecular statistics extensive use is made 
of Markov processes, which correspond to infinite 
accelerations and higher time derivatives. Turbu­
lence theory can derive very reliable results for 
the corresponding rms values, which approach in­
finity in the limiting case of vanishing viscosity. 
Some modification of the Onsager theory (Sec. 1) 
was thus required to take into account the internal 
time scale of fluctuations and to ensure the exist­
ence of accelerations; this can also be of interest 
for problems of molecular statistics. 

1449 



1450 E. A. NOVIKOV 

4. In using the Langevin stochastic equations to 
describe the relative motion of fluid particles 
(Sec. 3) it is assumed that the random forces are 
localized in space; the time localization of the ran­
dom forces follows from the fluctuation decay law. 
Through this hypothesis it became possible to re­
late the single-particle and two-particle descrip­
tions of turbulence by means of exact numerical 
coefficients and to obtain new results. The pro­
posed method of investigating turbulence is there­
fore called the random force method. 

1. GENERALIZED DECAY LAW OF EQUILIBRIUM 
FLUCTUATIONS 

Let us consider a stationary random function 
a(t) with zero mean value: 

(a(t)) = 0, (1.1) 

and the correlation function 

R(t) = (a (t -+ s) a (s)) = (a (t) a 0 ) (a 0 = a (0)), (1.2) 

which, in virtue of the stationarity, is independent 
of s and is even in t. 1> Conditional averaging for 
a fixed value a 0 is denoted by the symbol ( )0; 

we introduce the quantity 

a(t) = ( a(t)) 0 , 

a(O) = a0 • 

(1.3) 

(1.4) 

Averaging over the initial states will be denoted by 
a superior bar; complete averaging is therefore 
represented by 

Obviously, 

0 = Oo· 

R (t) = a (t) a0 , 

a(i) = 0. 

(1.5) 

(1.6) 

(1. 7) 

Unlike the randomly varying function a(t ), the 
function a(t) can be considered as decreasing 
monotonically in absolute value, with 

lim a (t) = 0. (1.8) 
l->ro 

The latter condition is associated with the fact that 
after some time a fluctuating quantity "forgets" its 
initial value. 

OnsagerC4J assumed, on the basis of empirical 
laws, that the evolution of a(t) is described by a 
linear law: 

da(t)/dt = - Aa.(t), (1.9) 

1>For the multivariate case the stationarity condition yields 
Rik(t) = <ai(t + s)ak(s)> = Rki(-t). Evenness and therefore 
symmetry follow from the principle of microscopic reversibility. 

where A. is a positive constant. From (1.9) and 
(1.4) we have 

(1.10) 

This expression, which satisfies the requirements 
(1. 7)-(1.8), is not in accord with evenness of the 
correlation function (1. 6). In order to satisfy the 
condition of evenness, t is replaced formally by 
It I; then from (1.10) and (1.6) we have 

(1.11) 

since a~= (a2(t)) = (a2 ). 

The time derivative of the correlation function 
(1.11) suffers a discontinuity at t = 0, whereas it 
should actually vanish. Indeed, for times that are 
small compared with the characteristic time scale 
T0, which will be determined be.low [see (1.13)] 
the function a ( t) is smooth and the correlation 
function assumes the form 

R (t) = (a2 ) - \'2 < [a (t)- a 0 F):::::: (a2 ) - 1/ 2 ((dajdt)2 ) t2 

(1.12) 

[ ( It 1) « To], Eqs. (1.11) and (1.12) are then equiv"' 
alent for t of the order 

(1.13) 

The expression (1.13) can naturally be called the 
internal time scale of fluctuations, 2> in contrast to 
the external time scale T = A. -l, which determines 
the fluctuation decay time. The ratio of these two 
scales, m = A.T0, is a small parameter; as this pa­
rameter decreases in value the frequency range of 
real fluctuations is extended. 

It is seen from the foregoing that the correla­
tion function (1.11) and the initial equation (1.9) 
apply only to times larger than T0• The empirical 
equation (1.9) could be verified only for such 
(macroscopic) times. We shall attempt to gener­
alize this equation so that it can also yield correct 
results for small times. 

The time derivative of a(t) must be a function 
of a 0 and t; assuming a one-to-one correspond­
ence between a(t) and a 0 for fixed t, we have 

da (t)!dt = F (t, a). 

Obviously, F(t, 0 ).= 0. Assuming small fluctua­
tions [ compared with the possible limits to the 
variation of the physical quantity a(t )] and con­
fining ourselves to the first term of F(t, a) ex­
panded in terms of a, we obtain 

da (t)! dt = aF (t, a) I aa la~oa (t). (1.14) 

We find that the coefficient of a(t) in the right-

2)We note that in the case of Brownian movement T0 signi­
fies the collision time. 
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hand side of (1.14) is generally dependent on t. 
Considering that (1.14) must go over into (1. 9) 

for t » r 0, we finally obtain 

da(t)!dt = - A(jl(th0) a(t), 

lim IP (x) = 1. 
x~oo 

(1.15) 

(1.16) 

This is a natural generalization of (1.9) if it is re­
membered that a(t ), unlike a(t ), is not a station­
ary random function and that the equation for a(t) 
can contain variable coefficients. 

From (1.15), (1.6), and (1.4) we have 

t;~, 

R (t) = (a2) exp { - m ~ IJl (x) dx}, (1.17) 
0 

where the notation m = A.r0 has been used. The 
evenness of R( t) leads to the oddness of <fJ ( x), 
while (1.12) gives 

IJl(X) = X (I X I< 1). (1.18) 

Since a ( t) is a stationary random function, the 
corresponding spectral function 

00 

<D (w) =f.- \ R (t) e-iwt dt 
-1t ~ 

-co 

(1.19) 

must be positive for all w. This imposes certain 
limitations on <P ( x). Finally, if we require the ex­
istence of mean squares and correlation functions 
for the derivatives of a(t) of all orders, <fJ (x) 
must be infinitely differentiable on the real axis. 
It follows from this last condition that the spectrum 
cl>( w) decreases for wr0 » 1 more rapidly than 
any power of the frequency. 3> At low frequencies, 
with m « 1, the spectrum has the asymptotic form 

(w-r0 <I), (1.20) 

which corresponds to the correlation function (1.11) 
and agrees with the classical fluctuation spectrum. 

In the language of probability theory the corre­
lation function (1.11) and the spectrum (1.20) cor­
respond to a Markov random process a ( t). The 
real physical process can be approximated by a 
Markov chain only for sufficiently large time in­
tervals (or at low frequencies ) . In small time in­
tervals we must take into account the microproc­
esses always existing in a physical system, which 
smooth out any sharp jumps of the fluctuating quan­
tities. 

The foregoing generalized decay law of equilib­
rium fluctuations (1.15) takes microprocesses into 

3lOne can assume the interpolation fonnula cp(x) 
= x(l + x2 )-y,, which leads to a spectrum that decays expo­
nentially at high frequencies. 

account phenomenologically. Moreover, this law 
eliminates the incompatibility between the principle 
of microscopic reversibility and Eq. (1.9), which 
is noninvariant under time reversal. This incom­
patibility was pointed out by Onsager [4] and re­
mained in all subsequent publications on fluctuation 
theory (e.g. [SJ). 

2. VELOCITY FLUCTUATIONS OF A FLUID 
PARTICLE IN TURBULENT FLOW 

Let us consider the homogeneous and statistic­
ally stationary flow of an incompressible fluid. A 
homogeneous flow is the simplest mathematical 
model, and can be used to describe the structure 
of real turbulent flow only on scales that are very 
small compared with the external turbulence scale 
L. 

Let v 1 ( t) be a vector representing the deviation 
of the velocity of a fixed fluid particle from the 
mean flow velocity. We have 

(v;(t)) = 0, 

R;k (t) = <v; (t + s) v" (s)) = <v; (t) Vko) 

(vko = vk (0)) , 

(2.1) 

(2.2) 

where ~k ( t) is the correlation tensor. In virtue 
of the stationarity we have 

Rik (t) = Rki (- t). (2.3) 

The dynamical equations of a viscous fluid are not 
invariant under time reversal; therefore we cannot 
in the general case require evenness of the tensor 
Rik(t). However, if this tensor is symmetric it is 
an even function because of (2.3). 

Rik ( t) is symmetric for isotropic flow and for 
axisymmetric flow, which is statistically invariant 
under reflections in any point. In the first case we 
have 

(2.4) 

where Oik is the Kronecker symbol; repeated in­
dices are summed from 1 to 3. In the second case 
we have 

where ni is the unit vector in a specified direction, 
R 11 ( t) is the correlation function of the velocity 
component parallel to ni, and R1 (t) is the corre­
lation function of one of the velocity components 
perpendicular to ni. 

As in Sec. 1, we denote conditional averaging 
for a fixed value of Vio by the symbol ( )0 and 
introduce 

U;(t) = ( V;(t)) 0, (2.6) 
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Furthermore, 

Rik (f) = Ui (f) Vko, 

Ui(f) = 0, 

lim Ui (t) = 0, 
t~oo 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

where the overbar denotes averaging over the pa­
rameters Vio· 

We shall now confine ourselves to a considera­
tion of isotropic flow. The extension of the results 
to axisymmetric flow encounters no special diffi­
culty. The generalized decay law of velocity fluc­
tuations and the correlation tensor for isotropic 
flow are 

dui(t)/dt = - A.cp (t/T0)ui (t), (2.11) 

1/"o 

Rik(t) = 1/ 3 <v~) 6ik exp {- m ~ cp (x) dx}. (2.12) 
0 

Here A. is the reciprocal relaxation time of fluid 
particle velocity; the function cp ( x) has the s arne 
properties that were enumerated in Sec. 1; m 
= A. T0; the definition of the internal time scale is 
similar to (1.13): 

(2.13) 

In order to elucidate the meaning of e: * we use 
the Langevin stochastic equation for the random 
velocity: 

dvi(t)ldt = - A.v£ (t) + f£(t), (2.14) 

where fi ( t) is the random force per unit fluid 
mass. Multiplying (2.14) by Vi(t), averaging, and 
using the stationarity condition, we obtain 

(2.15) 

Thus e: * is the energy afflux due to the work of 
random forces. Generally speaking, it differs by 
a factor of the order of unity from e:, the kinetic 
energy dissipation obtained in terms of the mean 
square of the Eulerian velocity gradient. The latter 
quantity is the basic parameter of the Kolmogorov­
Obukhov theory. [l, 2] The exact relation between 
these two parameters of turbulent flow requires 
special investigation. 

By dimensional reasoning we have 

To~ (vje) '/,, e ~ ( <vp) '!.I L, (2.16) 

where v is the kinematic viscosity and L is the 
external spatial scale of turbulence. Consequently, 
we have the small parameter 

m = A'T:0 ~ Re-'/, (2.17) 

where Re is the Reynolds number. We note that 
the same small parameter appears in the theory 
of the boundary layer. 

For times greater than To Eqs. (2.12) and (1.16) 
lead to 

([ t[ ~To). (2.18) 

The corresponding asymptotic form of the turbu­
lent-flow energy spectrum E( w) = t;2 «<lzz( w) 
[where «<lik( w) is the spectral tensor] is 

(2.19) 

When m is sufficiently small (the Reynolds 
number therefore being large), there exists the 
time interval 

and the corresponding frequency interval 

1 ~ro'T:0 ~ m, 

for which Eqs. (2.18) and (2.19) lead to 

D(t) = <[vi(t) - V£ol 2) = 2e. [ t [, 

E (ro) = e.f2:rtro2 , 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

where D ( t) is the structural function. We thus see 
that e:* is the only parameter determining the be-
havior of fluid particles in the given time and fre­
quency intervals. 

Equation (2.22) corresponds to the Kolmogorov­
Obukhov %-lawC1J and to the Eulerian description 
of turbulence derived by dimensional reasoning for 
the inertial interval of the scales. Obukhov has de­
rived a similar formula in [S], where he assumed 
a six-variate Markov process for the coordinates 
and velocity of a fluid particle under Galilean in­
variance.4> In Obukhov's equation the role of e:* 
is assumed by the constant coefficient B in the 
Fokker-Planck equation (the diffusion coefficient 
in velocity space ) . 

Returning to the Langevin equation (2.14), we 
can now determine the asymptotic form of the 
random force spectrum: 

which corresponds to the classical "white noise." 
If we require that the mean square time derivative 
of velocity exist for all orders, the random force 
spectrum, like the energy spectrum, must decay 
in the region wT0 » 1 more rapidly than any power 
of the frequency. 

4>In actuality it is sufficient to require a Markovian velocity, 
since the statistical characteristics of the coordinates can be . t 
obtained from the equation Xi(t) = Xio + fvi(s)ds. 

0 
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From (2.12) and (2.14) we obtain the following 
expression for the correlation tensor of random 
forces: 

1/-ro 

+ <p' ( +o ) ] exp {- m ~ <p (x) dx } , (2.25) 
0 

where the derivative with respect to the dimension­
less argument is denoted by a prime. The proper­
ties of cp ( x) show that the random forces are es­
sentially local in time and have the correlation 
time scale T 0• The random forces thus differ from 
the accelerations, whose correlation also vanishes 
at t ~ T0• On the other hand, in the interval To« t 
« A. - 1 we have negative correlation, with 

00 00 

5 dR,, (t) I w ll (t) dt = - -d-t - = 0, 
0 0 

(2.26) 

where W ik ( t) is the acceleration correlation ten­
sor. For the contraction of the random force cor­
relation tensor we have, using (2.24), 

00 

(6v ;o 6vko) = A2 [ 6;k- 1/4 r-;;2 r,o rko) (er0)'i•, (3.4) 

where A 2 is a structural constant of the order of 
unity and the coefficient '/4 follows from the in­
compressibility condition. 

We assume that the characteristic spatial scale 
of the mutual correlation of random forces acting 
on two different fluid particles is of the order l 0, 

i.e., that our random forces are localized in both 
time and space. Since r 0 2:: l0 and the average sep­
aration of particles will subsequently increase, the 
random forces acting on the particles can be re­
garded :;ts uncorrelated from the very beginning. 
The correlation tensor for Ofi ( t) is then equal to 
twice the correlation tensor (2.25). 

We select two successive instants: t 2 2:: t 1 » T0• 

It is easily seen that in calculating the correlations 
of relative velocities and distances between the 
particles for these times we can neglect the cor­
relations between the random-force difference and 
the initial relative velocity; we then use (2.27) and 
the following expression for the correlation tensor 
of random-force differences: 

(3.5) 

~ F u (t) dt = e. (2.27) where o(t) is the Dirac delta function. 
0 

3. RELATIVE MOTION OF FLUID PARTICLES 

Combining two equations of a system of Langevin 
equations for different fluid particles, we obtain an 
analogous equation for the relative motion of two 
selected fluid particles: 

d6v;(t)ldt = - 'Mv; (t) + 6f;(t), (3.1) 

where ovi (t) is the relative velocity of the par­
ticles, and Ofi ( t) is the difference between the 
forces acting on these particles. We have 

I 

6v;(t) = 6vio e~At + ~ e~l,(l~s) 6f;(s) ds, (3.2) 
0 
t 

r;(t) = r,0 + ~ 6v,(s) ds. (3.3) 

Here ri ( t) is the distance between the particles; 
the zero subscripts denote initial values. 

Let the initial distance between the particles 
belong to the so-called inertial interval of dis­
tances: 

L ~ r 0 ~ / 0 = v'l•e~'f•, 

where l 0 is the internal spatial scale. [1] In this 
case we can determine the correlation of initial 
relative velocities using the %-law: [1] 

From (3.2), (3.3), and (3.5) we obtain the follow­
ing expressions for the correlations of relative ve­
locities and distances between the particles: 

(6v, (t1) 6vk (t2)) = (6v,0 6Vko) e~l..(l,+l,) + 4/ 3 e) ... ~1 6;ke~At, sh At1 , 

(3.6)* 

(r, (tl) rk (t2)) = r;orkO + A.-2 (6V;o6Vko) (1 -e-1..1•) (1 -e-1..1•) 

+4/3e* A.-36;k [At 1 - (1 -e~l..l,) 

(3. 7)t 

We shall now consider certain special cases. 
Putting t1 = t 2 = t « A. - 1 and equating individual 
terms in (3.6), (3. 7), and (3.4), it is easily shown 
that the effect of the initial conditions is unimpor­
tant for times t » rij13E-113• For such times we 
have 

<[6v1 (t))2) = (2e.JA.) (1 -e-21..1), (3.8) 

<r7 (t)) = (2e)A.3) (2At- 3- e-21..1 + 4e~l..l), (3.9) 

1 d 2 ·2e 
K(t) = 2 dt (rt (t)) =---;:'- (1 + e~2l.. 1 - 2e-AI), (3.10) 

where K( t) is the dispersion coefficient 
Equations (3.8)-(3.10) can also be regarded as 

the parametric forms of the functions representing 

*sh =sinh. 
tch =cosh. 
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the dependence of the velocity structural function 
and the dispersion coefficient on the separation of 
the particles. Specifically, for A.t « 1 (i.e., for 
r « L) we obtain from (3.8) and (3.9) the Kolmogo­
rov-Obukhov %-law 

(3.11) 

while from (3.9) and (3.10) we obtain the Richard­
son %-law: [7] 

(3.12) 

With regard to the last equation it must be noted 
that Richardson determined the exponent % em­
pirically. On the similarity hypothesis the exponent 
% is obtained from dimensional considerations if it 
is assumed that E is the only parameter character­
izing turbulent flow in the inertial interval of 
scales. [2] An equation similar to (3.12) has also 
been derived by Lin. [ 8] However, Lin's equation 
contains an additional constant that is not related 
to the velocity structural constant of a single se­
lected fluid particle. In this sense Lin's equation 
supplies no new information compared with Rich­
ardson's law as derived by dimensional reasoning. 

We note another special case of (3.6) and (3. 7). 
For two different instants in the interval rij/3 E -1/3 

« t 1 « t 2 « A. - 1, when the initial separation has 
been "forgotten," but the particles are still sep­
arated by a distance much smaller than L, we 
obtain 

(0 Vt (fl) 0 Vt (t2)) = 4e,t1 , 

(rt (tl) rt (t2)> =% e, ti (3t2- t1). 

(3.13) 

(3.14) 

Equation (3.14) is perhaps most suitable for ex­
perimental checking. For example, one could ob­
serve the relative motion of small spheres sus­
pended in a turbulent flow. 

We note that if we consider the variability of 
dissipation, which was first pointed out .by Landau [9] 

and which has been discussed by Obukhov[10] and 
by Kolmogorov, [HJ all expressions for the corre-

lation functions must also be averaged with re­
spect to E, or in our case with respect to E*. The 
corresponding averaging of the Eulerian second 
moments, in which E has the power %. results 
in the appearance of a correction factor depending 
on the external scale of turbulent flow; [ 10• 11 ] addi­
tional considerations are needed to determine this 
dependence. The Lagrangian second moments 
(2.22), (3.13), and (3.14) depend on E* linearly; 
therefore the secondary averaging does not change 
these but results simply in the replacement of E * 
by its mean value. This constitutes a decided ad­
vantage of the Lagrangian description of turbulence. 

I take this opportunity to thank A. M. Obukhov 
for valuable comments. 
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