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It is shown that if a particle rotates in a constant magnetic field, a weak high frequency radial 
or azimuthal magnetic field with a frequency equal to the anomalous part of the spin preces­
sion frequency should induce resonance spin flip. 

IN some experimental investigations [i] the mag- munication from whom served as the impetus for 
netic moments of particles were measured by a the present calculation). In practice it is more 
high frequency method, in which resonant flip of a convenient, apparently, to use for the resonant 
spin precessing in the main magnetic field is ob- spin flip only the radial component Hr of the 
served if the frequency of the perturbation is equal high-frequency field. This case is considered 
to the precession frequency. It will be shown be- in the present paper. 
low that such a resonance is possible also in the Let the particle rotate in the main field Ho 
case when the perturbation frequency is equal not along an orbit of radius p. Turning on the radial 
to the entire precession frequency, but only to its high-frequency field leads to the appearance of 
anomalous part, which in turn is equal to additional fields, in accordance with Maxwell's 

Qo = ywEjmc2 , y = (g- 2)/2 = 1'1~/~. 

where J.L is the magnetic moment of the particle, 
g the gyromagnetic ratio, w the rotation fre­
quency, and E the total energy. It is essential 
here that the particle must rotate in the magnetic 
field along an orbit of finite radius p, so that it 
is possible to produce a high frequency field di­
rected either along the radius or along the par­
ticle rotation. 

Resonance is ensured by the radial or azi­
muthal component of the perturbing high-frequency 
magnetic field, and only by its average along the 
orbit. The resonance is connected with the fact 
that the projection of the spin on the plane of ro­
tation precesses around the orbit with frequency 
U0; if the angle between the high-frequency field 
lying in the orbit plane and the tangent to the or­
bit also varies in time with frequency n0, then 
we can expect a change in the orientation of the 
spin relative to the magnetic field. 

This resonance, obviously, makes it possible 
to increase by approximately 700 times the ac­
curacy with which the magnetic moments of the 
electron and muon are measured by the high­
frequency method, since the anomalous part of 
the magnetic moment is measured directly. The 
idea of measuring the g-factor of the electron 
with the aid of the possible anomalous resonance 
was advanced by M. Vishnevski1 (a private com-

equations. Taking into account the fact that the 
high frequency, close to the frequency U0 of the 
spin precession, is small compared with the rota­
tional frequency and that the deviations of the par­
ticle from the equilibrium are small, so that 
n2z2/c2 « 1 and U2r 2/c2 « 1, with r = R-p, 
where z is the vertical deviation and R the radial 
coordinate of the particle, we obtain the following 
approximate expressions for the fields: 

Hz= Ho (1- 6zp-1 cos Q 1t), 
Ex= HoQ 1c-1 z6 Sih Q 1t, 

H, = H06cos Qit, 
Hx = E, = Ez = 0,(1) 

where o "" Hr /Hz « 1, and x is the coordinate 
along the circular orbit. It turns out that it is nec­
essary to take into account in the equation of spin 
motion the terms "" o2; since z is of order o and 
r of order o2, it is sufficient to retain in (1) the 
terms linear in r. 

The equations of motion of the spin have the 
following general form [2]: 

DS'!D-c = (e/mc) (1 + r) F~Sk + y (e/mc) F':;,Smunu', (2) 

where si is the four-vector of the spin and T 

= tmc2 /E the proper time, 

u' = dx'!cd-c, x2 = r, x 3 =. z, 

Fk -the electromagnetic field tensor 
DS'!DT = dS'!d-c + r~ 1ukS 1 

X 0 = ct, 

-covariant derivative, rkz -Christoffel symbols 
(see, for example, [3J). 
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The equations of motion for the particle have 
the form 

. z; (I) {Q me2 .. • u1 + . u1 = ------ -- uzuo sm QT 
p (1 + r if') 1 -:- r ,' f' c E 

+ (1 -6 ~ cos ~h) u2 - 6u3 cos Q T}, 

u" _ _!'.._(1 + _c_) (u1) 2 ceo-- (t) 11 _. _c_)(1-6~ cos !;h)u1 , 
p p \ fJ fJ 

tis = ol6 ( 1 + %) u1 cos ~h, 
. ~~ me• "' I I . r ) I . n uo=w-cyuz\ +-p u sm,.T, 

w = eHrJmc, 

From this we obtain, accurate to terms ~ o2, the 
forced oscillations of the particle, which vanish 
when o = 0: 

,- = _ lj2 w2~~ · 2p, z = 6w2 g-2 p cos QT; 

u' = p/mc(l + o2w2 Q-2 cos2 QT), 

u0 c~ E/mc2 (1-+ o2w2Q -z (pc/£)2 sin2 ~h), 

ua = 6 (wpiQmc) sin QT. 

(3) 

(4) 

Here E is the equilibrium energy, that is, the par­
ticle energy when o = 0. 

Substituting (1) and (4) in (2), we obtain after 
rather prolonged manipulations the following equa­
tions for the spin: 

S1- (£/mc2)QoS2 =A u62S1 sin 2Q T 

+(A~2o2+ Ai2o2 cos 2QT) s• +A 13{) S3cosQ T, 

S2 + (mc2IE) Q 0S1 = A 2102 (I -cos 2QT) Sl, 

S3 = A31oS 1 cos QT + A32 6S2 sin QT + Aaa 025 3 sin 2QT, 
(5) 

where 

Qo = rwEimc2 , IAu = - r (w212Q) (pc/£2) [1 - r (£1mc2)2J, 

1 1 A12 = Trw3Q-2 [2 + (£I mc2) 2 ], 

Ai2 = ± rw3 Q -2 [3 (£I nzc'il)! - 2], 

A1a = - w l1 + r (£1nzc2)2 l. A 21 = rw3/2Q 2 , 

A at= w (1 + r), A 32 = r (p/mc)2w2/Q, 

A aa = - r (p/mc)2w2/2Q. 

In these equations we have used the connection be­
tween the spin components and the four-dimensional 
velocity: uisi = 0. 

We have thus obtained a system of equations (5) 
with periodic coefficients of period T = 21r/n. Such 
a system is solved in accordance with the well­
known scheme [ 4J. It is first necessary to find the 
fundamental system of three linearly independent 
solutions, determined by the initial conditions: 

5 1 (O) = 61 = {1. i = k 
k k 0, i =I= k • 

i -number of spin projection, k -number of the 
solution. It is sufficient to find the values of sk( T) 
-solutions at the instant of time T, differing from 
the initial time by one period T. 

The development of any solution in time can be 
represented in matrix form: 

5 1 (T) 

s• (T) 

53 (T) 

s~ (T), 

Si (T), 

s~ (T), 

s~ (T), 

s~ (T), 

s~ (T), 

s~ (T) 5 1 (0) 

s~ (T) s• (OJ (7) 
s~ (T) 53 (0) 

According to the Floquet theorem (see, for exam­
ple, [4]) the general solution of (5) can be written 
in the form 

3 

sk (T) = .2] i"-n'<2n/T <pk (n) ('t') Nk, {
£ jme2 n = t Nk • 

- 1, n=/=1' 
n=l 

(8) 

where <Pk(n)(T) =<Pk(n)(T+T) is some periodic 
function, and an is the quasi-frequency (analogous 
to the quasi-momentum of the electron in a periodic 
field), which in this case has the meaning of the 
number of slow oscillations of the spin during the 
period T. 

Introducing A.n = exp ( 27ri G'n) we have the fol­
lowing characteristic equation for the determina­
tion of the three roots A.: 

IS~ (T)- M~ I = 0. (9) 

This equation is an obvious consequence of the 
Floquet theorem and of Eq. (7). After finding A.n, 
we obtain for each A.n its own function <P k(n) ( 0) 
from the following equations: 

3 

~ (S~ (T)- An6~) t:pk<n> (0) = 0, i = 1, 2, 3, n = 1, 2, 3. 

(10) 

Using perturbation theory accurate to o2, we 
have obtained for the case of exact resonance n 
= no 

S~(T) = 1- 62n2J ~~~~. S~(T) = 62MnfQo. 

s~ (T) = 6A 13nmc2 1 Q0£, Si (T) = 62 (K-+- 3J I 2Q0) n I Qo, 

S~ (T) = 1, S~ = 0, S~ (T) = 6 (A 31 E jmc2 - Aa2) nl Qo, 

(11) 

where 

w2 1 + r (£ 1 me2) 2 

J = T (E I me2) 2 ' 

M - _!_[A -L me• A 2 2mc• A1 -3 __!:___A J - 2 11 , E 12 + E 12 me• 21 , 

1 
K=--:x 
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Equation (9) assumes the form 

(A- 1) [A2 - 2 (1- 62 JJrP jQ~) A+ 1] = 0. (12) 

This yields (under the condition o2J1r2/na < 1, that 
is, 7T2o2/2y2(E/mc2 ) 4 < 1) 

Al = 1, A2,3 = 1 ± i6rt V2J I QO· (13) 

When A = 1 the value of c;o 2<1 > ( 0 ) is arbitrary, 

!Jll(I)(O) ~ 62!Jl2(1) (0), !Jla(l) (0) ~ 6qJ2(1) (0); 

and when A = A2,.3 

(jl3 (0) = =F iqJ1 (0)' qJ2 (0) ~ 6!p1 (0). 

It is meaningful to consider the orientation of the 
spin at discrete instants of time with interval .M 
= T; numbering them by the index p, which has 
the meaning of the number of spin revolutions 
around the momentum, we obtain 

S~=~acosp~, S~=b, S~=asinp~; a2 +b2 = 1, me 

(14) 

Here ~ is constant only because the spin is con­
sidered at the discrete instants of time indicated 
above; in the interval between them, S2 and S1 ob­
viously rotate with frequency n0• 

Formulas (14) show that under the influence of 
the high frequency field Hr, the spin rotates 
slowly with frequency ~ o in a vertical plane when 
the frequencies are equal. When the frequencies 
n and n0 are not equal, we obtain the usual res­
onance curve with half-width ~n ~ ow. 
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