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The plasmon energy of the m-electron system is calculated for very long conjugated mole-

cules with unequal CC-bond lengths.

IN the investigation of the spectra of electron ab-
sorption in organic molecules with conjugated
bonds, it is usually assumed that three valence
electrons of each carbon atom are described by
hybrid wave functions and form o-bonds; the wave
function of the fourth valence electron is assumed
not localized near a definite atom, but extending
over the entire core of the molecule, i.e., it is as-
sumed that this last 7™ electron can move relatively
easily from one carbon atom to the other.

The theory of collective effects in the m-electron
system was considered by Araki and Murai (1] and
by Mizuno and Izuyma 2], 1t was found[?] that in
long molecules, unlike in metals, the limiting fre-
quency of the plasma oscillations vanishes. This
circumstance should emphasize the importance of
collective effects in the long-wave region of the
electron-absorption spectra and by the same token
the need for developing a more complicated theory
of m-electron states. In this connection, a more
accurate estimate of the plasma frequency is of
interest.

We note first that in the usual analysis the
molecule is likened to a one-dimensional metal,
but such a state, as would follow from most gen-
eral considerations, turns out to be unstable against
deformations that lead to doubling of the period and
consequently to the occurrence of a forbidden band,
if we deal with long molecules. Numerical calcu-
lations (3] give for the resultant differences in the
bond lengths a value of the order 0.04 A. The ex-
istence of a forbidden band explains also the sin-
gularities in the absorption spectrum in polyene
chains[4].

We proceed to an examination of the collective
effects. If we impose cyclic boundary conditions,
then the m-electron wave function will have the
property of one-dimensional Bloch functions

Ye(r) = etk L-"hu,(r), up (x + ¢, 4, 2) = u (x, 4, 2),

(1)

where x is the direction along which the potential
of the core is periodic. The function uk(r) de-
creases relative to the coordinates y and z just
as rapidly as the atomic wave functions.

The m-electron total energy operator can be
written in the form

H=H0+HC—F7

where H; is the operator of single-particle energy
in the Hartree-Fock approximation and Hg the 7-
electron Coulomb interaction energy operator; the
operator is due to the fact that H, already includes
in part the interaction between electrons (%], In the
calculation of the Coulomb potential matrix ele-
ments it is convenient to go over to the well known
Fourier representation
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with q = (7, f) and r = (%, p).

We write, in analogy with the three-dimensional
case [G], the wave function of the collective excited
state of the system in the form

Y= A"V, [H, Al =§hQA", (@)

where A* is the operator

A= 2 {ap,l a;,b; + ﬁp,l bpal}v (3)
p,i

ap(a’ﬁ) and bp( bg) are the ordinary electron hole

annihilation (creation) operators.

By substituting (3) in (2) we obtain for the co-
efficients op,7 and Bp,7, in the approximation of
the random-phase method, a closed system of
equations from which we obtain, taking the peri-
odicity properties of the Bloch functions into ac-
count, the following integral equation for the de-
termination of the frequency hQ
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where the kernel Qj(p, £’) is of the form
Wp+l. P (—=1) Wp. p+l (f
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€c and ey are single-particle energies which are
larger or respectively smaller than the Fermi en-
ergy. The function Wi ;(f) is of the form

W, = %’— % uy(r) e'fe uy(r) do,
Ve
the integration extends over the volume of the unit
cell Vg.
For small ! we can represent the function
Wk, 1, using the Bloch equation, in the form

Wit p = o
PSP e (D =g (0) T RP2m
B N ( . .
= A X eife uk(tV)uk du.
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From this, in accordance with (4), we obtain as
1—0

S, (F) = qo/(1 +22%2mA), A = e, (0) — &, (0),

where ¢ is a constant vector.

Using the theorem on the sums of oscillator
strengths, we can obtain from (4) the following
estimate for hQ:

Q< {2eNA/L + A%, (5)
where A is the width of the forbidden band and

N/L the linear density of the electrons. If we
take A equal to 2.5 eVL'], we obtain in the case
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of polyene chains hQ2 ~ 5 eV. Thus, the spectrum
of the collective excitations lies much higher than
the single-particle levels.

The foregoing estimate for the plasmon energy
hQ is obtained by substituting in (4) the approxi-
mate expressions for Sy(f) and Wp.7 p and re-
placing the upper limit of integration with respect
to |f’| by infinity. On the other hand, for finite
but sufficiently long molecules, the wavelengths
along the molecule are limited by the dimensions
of the molecule and by the same token the quasi-
momentum [ is bounded from below and has some
minimum value. Since, furthermore, dQ/dl > 0,
the plasma frequency for finite molecules will by
the same token be larger than its limiting value
for an infinitely long molecule. For N ~ 15—20
both corrections approximately cancel each other,
and the plasma frequency will therefore have the
order of magnitude indicated above.
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