EFFECT OF NUCLEAR DEFORMATIONS ON THE ISOTOPE SHIFT OF SPECTRAL LINES

F. A. BABUSHKIN

Submitted to JETP editor April 26, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 45, 1479-1483 (November, 1963)

The effect of axial and nonaxial deformations on the isotope shift of spectral lines is calculated with an accuracy up to terms of order β^3 . The deformation compressibility is taken into account to the same order. Satisfactory agreement between the theoretical and experimental values has been obtained for all pairs of isotopes for which the experimental values of the isotope shift constants and deformation parameters are known, with the exception of the pair ₆₀Nd¹⁴⁶⁻¹⁴⁸. The calculations show that the effect of the nonaxiality of the nucleus can be completely neglected.

N an earlier paper ^[1] the author has calculated the constants of the isotope shift (i.s.) of the spectral lines for spherical and deformed nuclei. The calculations were based on the method of Broch, ^[2] using wave functions obtained by the author. ^[3] The i.s. for deformed nuclei was calculated with an accuracy up to terms of order β^2 , where β is the deformation parameter.

In comparing the theoretical and experimental data, discrepancies were observed in a number of cases (for the isotopic pairs ${}_{58}\text{Ce}{}^{140-142}$, ${}_{60}\text{Nd}{}^{146-148}$, ${}^{148-150}$, ${}_{62}\text{Sm}{}^{151-153}$, and ${}_{74}\text{W}{}^{184-186}$). It was proposed that this disagreement is due, first, to the inaccuracy in the determination of the deformation parameter and, second, to the unjustified neglect of terms of order β^3 in the case of strongly deformed nuclei.

In the present paper the author has made use of the latest results on nuclear Coulomb excitation to determine the deformation parameters of several nuclei. Furthermore, the calculations were carried to terms of order β^3 . This allows us also to take into account the effect of the nonaxiality of atomic nuclei on the magnitude of the i.s.

Following Fradkin, ^[4] we introduce the notion of the compressibility of deformed nuclei which is characterized by the deformation compressibility parameter $\xi = -5/8\pi$. Since the calculations are carried to terms of order β^3 , we must extend Fradkin's work to include the deformation compressibility to the same order, that is, we take

$$R_{eq}^{2\gamma} = R^{2\gamma} \left[1 - (\xi\beta)^2 \pm (\xi\beta)^3 \right], \tag{1}$$

where R is assumed to be given by [5]

$$R = (1.115A^{1/3} + 2.151A^{-1/3} - 1.742A^{-1}) \cdot 10^{-13} \text{ cm.} \quad (2)$$

The sign in front of the last term is found empirically by comparing the theoretical and experimental data. For example, for the i.s. constant of $_{63}\text{Eu}^{151-153}$ we obtain 438, 384, and 331, respectively, for the three choices $+(\xi\beta)^3$, $(\xi\beta)^3 = 0$, $-(\xi\beta)^3$. Comparing with the experimental value 450 ± 50 , we find that the agreement is best if we choose the positive sign in front of the last term of (1).

The i.s. constant for deformed nuclei is determined by the relation

$$C_{\rm def}/C_{\rm sph} = \delta \langle R_{\rm def}^{2\gamma} \rangle / \delta \langle R_{\rm sph}^{2\gamma} \rangle.$$
(3)

The method of calculating the ratio on the righthand side is completely analogous to the method used by Fradkin. Taking into account (1), we obtain

$$\delta \langle R_{def}^{2\gamma} \rangle / \delta \langle R_{sph}^{2\gamma} \rangle = 1 + [\gamma (2\gamma + 3)/4\pi - \xi^2] (\beta_1 + \beta_2)^2 / 4 + \frac{1}{2} [f (\gamma, \gamma_1^0) \beta_1^3 + f (\gamma, \gamma_2^0) \beta_2^3] + (R/2\gamma \delta R) \{ [\gamma (2\gamma + 3)/4\pi - \xi^2] (\beta_2^2 - \beta_1^2) + f (\gamma, \gamma_2^0) \beta_2^3 - f (\gamma, \gamma_1^0) \beta_1^3 \},$$
(4)

where

$$f(\gamma, \gamma^0) = \frac{\gamma (2\gamma + 3)^2}{42\pi} \sqrt{\frac{5}{4\pi}} \cos \gamma^0 (1 - 4 \sin^2 \gamma^0) + \xi^3.$$

 $\gamma = \sqrt{1-\alpha^2 Z^2},$

Here γ^0 is the parameter of nonaxiality, and the indices 1 and 2 characterize the isotopes for which the i.s. is calculated. The expression for C_{sph} is given by (4) of ^[1]. The deformation parameters β are determined from

$$Q_0 = 3 (5\pi)^{-1/2} Z R^2 \beta [\cos \gamma^0 + 0.36\beta (1 - 2 \sin^2 \gamma^0)], \quad (5)$$

where R is given by (2).

The values of the deformation parameter β of nonaxial nuclei computed according to (5) are listed in Table I. For comparison, we have given

ur Deforma	tion Parame	eters		Table I	I. Isotope	Shifts	
$eta_{ extsf{axial}}$	y, ⁰ deg	$\beta_{nonaxial}$	R Jement	~	Ctheor,	10 ⁻¹ cm ⁻¹	1
				A1 - A2	Cdef.ax.	Cdef.nonax.	Cexp, IO CIII -
0,196 0,212 0 235	27,2[6] 24,4[6] 26,0[6]	0.224 0.236	s7Rb	85—87	15.8		8±12 [¹⁴]
0,259	24.4 [6]	0.290	44Ru	96—98 08 400	43.0	c c	
0.208 0.220	26,8[0] 26,8[0]	0.238		100-102 102-104 102-104	38.2 40.0	39.7 39.7 40.0	34±9 [**] average
0.234	26.8 [6]	0.266	46Pd	106 - 103 108 - 110	37.7 38.7	38.4 39.6	42 ± 9 [14] 36 ± 5 [14]
0,175	25.4 [9]	0.204 0.198	47Ag	107 - 109	38.8		38 ± 6 [¹⁴]
0.179 0.184 0.186	27.6 [e] 26.8 [e] 26.0 [e]	0.206 0.209 0.208	48Cd	106—108 108—110	41.0 34.2 38.6	34.3 40.0	32±4 [¹⁴]
0.137 [8]				112-112 112-114 114-116	38.5 38.5	37.4	
0.127 [9]			50Sn	112-114 114-116	42.9		40 ± 10 [14]
$\begin{array}{c} 0.188 [^8] \\ 0.286 \end{array}$	26.0 [⁶] 13.2 [⁶]	0.211 0.296		116-118 118-120 120-122	41.1 40.7		30 ± 10 [14] 30 ± 10 [14] 45 ± 10 [14]
0.285	13,8 [7]	0.294		122-124	40.4		15 ± 10 [14]
0,311	11.0 [7]	0,318	seCe	140—142	89.5		147 ± 30 [14]
0.303 [10]			pN ₀ 9	146-148 148-150	98.4 219		$202\pm 38 \left[^{15} ight]$ $286\pm 54 \left[^{15} ight]$
$\begin{array}{c} 0.247 \left[^{11} \right] \\ 0.241 \left[^{11} \right] \\ 0.224 \left[^{11} \right] \end{array}$	$\begin{array}{c} 11.3 \\ 13.8 \\ 13.8 \\ 16.5 \\ 7 \end{array}$	0.252 0.250 0.234	e2Sm	$\begin{array}{c} 148 - 150 \\ 150 - 152 \\ 152 - 154 \end{array}$	156 255 176	249	217 ± 46 [¹⁵] 317 ± 67 [¹⁵] 170 ± 35 [4]
0.197 [12]			tsEu	151-153	438		450±50 [14]
$0.182 [1^2]$ 0.0.197 [12]	16.5171	0 206	PG M	154156 155157 156157	164 110	167	162 ± 26 [16] 109 \pm 18 [16]
0.189 [11] 0.150 [11]	19.2 [7] 22.2 [7]	0.201		158-160	130		121 ± 19 [10] 125 ± 20 [16]
0.161 [11] 0.145 0.104	25.2 [7] 30.0 [7] 30.0 [7]	0,181	dYbr	$170-172 \\ 171-173 \\ 172-174 \\ 174-176 \\ 174-$	145 102 115		$\begin{array}{c} 110\pm10\left[^{14}\right]\\ 112\pm12\left[^{4}\right]\\ 99\pm8\left[^{14}\right]\\ 94\pm8\left[^{14}\right]\end{array}$
0.186 [13]			72Hf	178—180	134		114±13 [14]
0.189 [13]			74 W	182—184 184—186	157 115	161 114	$\begin{array}{c} 132 \pm 2.3 \begin{bmatrix} 17\\117 \pm 20 \end{bmatrix} \begin{array}{c} 17 \end{bmatrix}$
			75Re	185—187	146		157±40 [14]
			76Os	186-188 188-190 190-192	178 175 149	182 183 153	$\begin{array}{c} 176 \pm 27 \\ 150 \pm 23 \\ 130 \pm 20 \\ 130 \pm 20 \\ 1^{15} \end{array}$
			77 Ir	191 - 193	136		130 ± 30 [14]
			78Pt	194196	128	118	135 ± 25 [14]
			80Hg	198-200	233		243 ± 27 [15]

185 187

75Re

 $\begin{array}{c}
 186 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\
 192 \\$

 $_{76}Os$

 $194 \\ 196$

 $_{78} \mathrm{Pt}$

 $203 \\ 205$

 $^{\rm s1}{\rm Tl}$

170 182 184 186

 $_{74}W$

4Y₀7

Table I. Nuclear Deformation Parameters

V

Element

 $^{98}_{102}$

44Ru

 $106 \\ 1108 \\ 1$

46Pd

108 1110 114 114 116

4sCd

148

90Nd 62Sm

 $150 \\ 152$

 $154 \\ 156$

€₄Gd

142

58Ce

EFFECT OF NUCLEAR DEFORMATIONS ON THE ISOTROP SHIFT

1023

280±40 [14]

294

203 - 205

81 T I

in the same table the deformation parameters for axially symmetric nuclei ($\gamma^0 = 0$), taken from the earlier paper of the author.^[1] The deformation parameters of some nuclei were calculated anew using the latest data on nuclear Coulomb excitation. The remaining deformation parameters not listed in the table but used in the calculation of the i.s. were taken from^[1].

The calculated values of the i.s. constants are listed in Table II. A comparison of the theoretical and experimental values of the i.s. constants shows that the inclusion of terms of order β^3 and the introduction of the deformation compressibility in these terms improve the agreement between theory and experiment. A large discrepancy between the theoretical and experimental values of the i.s. constants remains for the isotope pair ₆₀Nd¹⁴⁶⁻¹⁴⁸. This discrepancy can hardly be explained by an inaccuracy in the determination of the deformation parameters of these isotopes, since these isotopes are relatively well investigated by the method of Coulomb excitation, and various authors have obtained almost identical values for the reduced electric quadrupole transition probabilities in these nuclei, from which the deformation parameters are determined.

An analysis of Table II shows that the nonaxiality of atomic nuclei has a very insignificant effect on the magnitude of the i.s. and can be completely neglected in view of the limits of error of present-day experimental data.

² E. K. Broch, Arch. Math. o. Nat. 48, 25 (1945).
³ F. A. Babushkin, JETP 42, 1604 (1962), Soviet Phys. JETP 15, 1113 (1962).

⁴É. E. Fradkin, JETP **42**, 787 (1962), Soviet Phys. JETP **15**, 550 (1960).

⁵ A. R. Bodmer, Nucl. Phys. 9, 371 (1959).

⁶J. Hiura and S. Suekane, Progr. Theoret. Phys. **24**, 462 (1960).

⁷ E. P. Grigoriew and M. P. Avotina, Nucl. Phys. **19**, 248 (1960).

⁸O. Natan and V. I. Popov, Yadernye reaktsii pri malykh i srednikh energiyakh (Nuclear Reactions at Small and Intermediate Energies), AN SSSR (1962).

⁹ Andreev, Grinberg, Gusinskiĭ, Erokhina, and Lemberg, Izv. AN SSSR, ser fiz. **24**, 1474 (1960), Columbia Tech. Transl. p. 1466.

¹⁰ M. S. El-Nesr and E. Bashandy, Z. Physik 168, 349 (1962).

¹¹ F. K. McGowan and P. H. Stelson, Phys. Rev. **109**, 901 (1958).

¹² Alder, Bohr, Huus, Mottelson, and Winther, Revs. Modern Phys. 28, 432 (1956) [Russ. Transl. in Deformatsiya atomnykh yader (Deformation of Atomic Nuclei), IIL (1958), p. 9].

¹³ P. H. Stelson and F. K. McGowan, Phys. Rev.
 99, 112 (1955).

¹⁴ P. Brix and H. Kopfermann, Revs. Modern Phys. 30, 517 (1958).

¹⁵ Meligy, Tadros, and El-Wahab, Nucl. Phys. 16, 99 (1960).

¹⁶ Kopfermann, Krüger, and Steudel, Ann. Physik (6) 20, 258 (1957).

¹⁷G. Gluck and J. Blaise, J. Phys. Radium 20, 466 (1959).

Translated by R. Lipperheide 243

¹F. A. Babushkin, JETP 44, 1661 (1963), Soviet Phys. JETP 17, 1118 (1963).