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A microscopic derivation of the Ginzburg-Landau equations for an anisotropic superconductor 
is presented. The meaning of the constants encountered in the phenomenological theory and 
defined in terms of the gap values at absolute zero is clarified. 

THE equations of superconductivity theory can be ~+ (p1, p2; T) = T ~ ~:, (p1, p2) e-io:r', 

reduced to the Ginzburg-Landau equations[!] near "' 
we can write down for them equations [G] that acthe critical temperature Tc. This is possible be-

cause the theory is local in this region, i.e., all count for the anisotropy in the presence of the 
the quantities change noticeably over distances magnetic field. The gauge is chosen such that the 
that are much larger than the correlation param- scalar potential is equal to zero. The correspond-
eter ( 0 » ~ 0, where ~ 0 ~ v /T and 0 is the depth ing equations are of the form 

of penetration of the field). It is interesting to {iw -£ (p)}@3"'(p, p') + e ~ Aq vp@3w(P -q, p') 
(1) ascertain what this can lead to in the anisotropic q 

case. It turns out that this results in the equations + ~ fi (p, k) ~~(k, p') = 6p,p', 
proposed by Ginzburg [2]. The microscopic the- k 

ory allows us to clarify the meaning of the quan- {iw +£(p)}~~(p, p') -e~Aqvp~~ (p +q, p') 
tities in these equations. q 

In the derivation we assume that the potential + ~ li* (p, k) @3"' (k, p') = 0, 
of the interaction, spectrum, etc are anisotropic. 
Such a procedure is a simple generalization of the 
usual one and was proposed in many places (in 
particular by Bogolyubov, Tolmachev, and Shir
kov [3] and in the papers of Pokrovskil [4, 5J). It 
is convenient to rewrite it in a form where the 
superconductor is described by three Green's 
functions [SJ: 

b~~ @3 (p1 , p2 ; T1 - T2) = - <T {ap,ct (-rl) a;,,(l (-r2)}), 

fall~+ (p1, p2; T1 - T2) = <T {a;,,ct (-rl) a;,,!l (-r2)}), 

I a(l ~ (pl, p2; Tl - T2) = - <T {ap,ct (-rl) ap,,(l (-r2)} ), 

where 

The specific form of the Hamiltonian is of no in
terest to us. 

Introducing the Fourier components for the 
functions @3, ~. ~+ 

@3 (pi, P2; T) = T ~ @3"' (pl, P2) e-iw', 

~ (pl, P2; T) = T ~ ~"' (p1, p2) ci"'~, 

k 

!i* (p, k) = gT ~ v (kl, k2; p, k) ~~ (kl, k2), 
ktk2,U> 

(1') 

We have used here the following notation: ~ (p ) = 
E(p) - EF, where E(p) -arbitrary electron dis
persion law and EF -Fermi energy, Vp = Y'pdP ), 
Aq - Fourier component of the vector potential, 
V(k1, k2, p, k) -dimensionless matrix elements 
of the interaction energy 1 

The summation in (1') is over those k1 and k2, 
for which I ~ ( k1) I ::s w ( k1 /k1) and I ~ ( k2) I 
::s w ( kdk2), where w ( k/k) is a quantity on the 
order of the De bye energy. The magnetic field is 
introduced, as usual, by making the substitution 
p- p-eA in E(p) and by expanding E(p- eA) 
in powers of A. Only the term linear in A was 
left in the series, since in the field of interest to 
us the electron torsion radius ep0 /H is large 

1lThe fact that we make use of Fourier components of all 
quantities, disregarding the fact only a quasi-momentum and 
not a momentum exists in the lattice, will not affect the final 
results, since the field A and L. change at distances that 
are large compared with the period of the lattice. 
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compared with the depth of penetration (Po » eA 
~ eHo ) . In addition, account is taken in (1) of the 
fact that the change in the field occurs over dis
tances considerably larger than the inter-atomic 
distances. Equations (1) for an arbitrary potential 
are gauge-invariant, as are the corresponding 
equations of the theory of Bardeen, Cooper, and 
Schrieffer, accurate to terms T/w, which areal
ways small in real superconductors. Therefore, 
by calculating all the quantities accurate to terms 
T /w « 1, we obtain the final expression in gauge
invariant form. 

We introduce the Green's function of the elec
trons in the normal metal in the presence of the 
field ®w(Pi• p2 ). The equation satisfied by this 
function can be written in two ways: 

{iw -~(p)}@Tw (p, p') +e ~Aqvp@Jw (p- q, p') = 6p,p', 
q (2) 

{iw - ~ (p')} @l"' (p, p') + e :2; Aqv ~ @3"' (p, p' + q) = 6p,p'· 
q (2') 

With the aid of the Green's function &w<Pi• p2) and 
Eqs. (2) and (2'), we write the system (1) for 
~3, !j, and !j+ in integral form 

l.k 

!j~(p, p') = h@l_,(l, p) i.1*(1, k) @jw(k, p'). (3') 
l,k 

From (2) we obtain &w(P, p') accurate to terms 
that are quadratic in A • v inclusive: 

@j"' (p, p') = @3"' (p) 6p,p' - e@w (p) Ap-p' Vp@Jw (p') 

+e2 @3w (p)@3w(p')~Aqvp(Ap-~·-qVp)@3w(P-Q), (4) 
q 

where @3w(p)= {iw-~(p)}-i istheGreen'sfunc
tion of the normal metal in the absence of the field. 

Inasmuch as it is our aim to derive an equation 
relative to ~ in the vicinity of T c• where ~/T c 
~ -J 1- T/Tc « 1, expressions (3) and (3') can be 
expanded in powers of ~. It is seen from (3') and 
(1') that the expansion of the function !j+ can be 
carried out accurate to terms of third order in ~. 
exclusive. The function @3 must be known accurate 
to second-order terms in ~: 

@l"' (p, p') = @l"' (p, p') 

- ~ @l"' (p, I) L1 (1, k1) @l_"' (1', k1) i.1* (1', k;) @l..,(k~, p') 
(5) 

(the summation is over 1, 1', ki, and kl). Substi
tuting (5) in (3') we obtain the required expansion 
for !j+, with the aid of which we get from (1') an 
equation for ~*(pi, P2): 

L1* (PI• P2) = gT ~ V(kl> k2; PI• P2) @l_"' (1, ki) L1* (1, k3) 

X @l"' (k3, k2) -gT ~ V(ki, k2; PI> P2) 

X @l_"' (1, ki) i.1* (1, k3) &"' {k3 , I') L1 (I', k') @l_w(l', k') 

X i.1* (I", k") @"' (k", k2) 

(the summation is over all the repeated indices, 
and ki + k2 =Pi + p2 ). Using expression (4) for 
®w(Pi• p2 ), we obtain for the first term of the 
right half of (6) 

T ~ v (kl> k2; PI· P2) {@3_"' (ki) i.1* (ki, k2) @3"' (k2) 

- e ~ @3_"' (ki) L1* (ki, k3) @3, (ka)I(Ak,-k,Vk, )@3"' (k2) 
k, 

-e :2;@3_"' (I) (At-k,vl) @l_"' (ki) i.1* (1, k2) @3"' (k2) 
I 

+ e2 :2; @3_"' (ki) L1* (ki, ka) @3"' (k3) (Aqvk,) 
k,q 

(6) 

X (Ak,-k,-q Vk,) @3"' (k2) + e2 :2; @3_"' (I) (Aqvl) (AI-q-k,VI) 
l,q 

X @3"' (I - q) @3"' (ki) @3"' (k2) i.1* (1, k2) + e2 ~ @3_"' (I) 
k,,l 

X (AI-k,VJ) (Ak,-k,Vk,) @3_"' (ki) @3"' (k3) i.1* (I, ka) @3"' (k2). 

(7) 

In the absence of a field ~(Pi• P2) =~(pi) 6pi,-p2• 
so that k = Pi + p2 characterizes the inhomoge
neity of the gap. Starting from this, we shall 
henceforth write ~(Pi• p2) = ~k(Pi ). Since the 
important quantities in ~k and Aq are k, q ~ 1/6, 
and ~ ~ Tc, we can use the fact that T/vo « 1 
in the case of a London superconductor in which 
we are interested and expand (7) up to second pow
ers of v • k and v • q inclusive. Recognizing also 
that the changes in all the quantities occur at dis
tances much larger than interatomic, so that k « p 
and q « p, we obtain as a result 

i.1" ( ) gT ~ \' (k 
k P = (2n)3 '7:: .\ U 1> p){ [@3"' (ki) @3"' (ki) 

- @l"' (k1) @3 "'(ki) (vk,k) 2 M~ (ki) +e L] (Aqvk) 
q 

x (qvk, + 2kvk) @3! (ki) @3:, (ki) i.1;+q (k1) 

+ e2 h (Aqvk.) (Aq·Vk,) i.1~+q+q' (k1) [2@3~.,. (ki) @3"' (ki) 
q,q' 

(8) 

Here U(ki, p) = V(k1, -k2; p, -p) and the integra
tion with respect to aF is carried over the Fermi 
surface. 

Summing over w and integrating over ~ i we 
get 
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7~ (3) 
').., = 8(nT)2 ' 

(9) 

Here ln w is connected with w(p/p) by relation 
(9) of [4] 

(the meaning of the quantity 1/J(p) will be clarified 
later). 

Pokrovskil [4, 5] has shown for the equilibrium 
case when ~(p) does not depend on k, that in the 
weak-coupling model we have for arbitrary tem
peratures ~*(p) = Q*I/J(p), where Q* = Q*(T) is 
a function of the temperature only. Here T c 
= ( 2wy/rr )e-A/g, and 1/J(p) and A are determined 
from the integral equation [4] 

~ dcrlF 
"ljJ (p) = A U (k1, p) "ljJ (k1)-. 

v1F 

The function 1/J( p) characterizes the anisotropy 
gap at absolute zero ~(p, T = 0) = 2wlf!(p )e-Aig, 
where 1/J(p) is normalized by the condition 

~ dcrp ~dcrp "ljl2(p)-= -. 
Vp Vp 

We analogously seek ~k ( p) in the form ~k ( p) 
= Q*(k) 1/J(p). To obtain an equation for Q*(k), it 
is necessary to seek for ~k( p) the following ap
proximation 

d~ (p) = Q*(k) \jJ (p) +'Ill (p). 

The equation obtained in this manner for lf!t ( p ) 
can be solved if 

Tc- T • ~ dcr1p ~ dcr1p [k;k1 • 
-T- Qk "ljl2 (kl)- +A V;Vj\jJ2 (kl)- - 2- Qk 

c v1F v1F 

+e l}(Aq); (q + 2k)1 Q~+q- 2e2 ~ (Aq); (Aq•)t Q~+<~+<~'] 
q q,q' 

(10) 

(11) 

and taking Fourier transforms with respect to k, 
we obtain ultimately an equation for Q ( x): 

1 
~-2 - (Vi+ 2ieAi (x)) (V'k + 2ieAk (x)) Q* (x) 
J,k mik 

1 {T c - T \2} • ( ) 0 + 1] --y;-- f \ Q (x) Q x = · 

Let us proceed to calculate the current density. 
Ih anisotropic conductors the current density is 
given by 

j; (q) = 2eT ~ @3"' (p + q, p) V; (p) 
o>,p 

- 2e2T ~ w;1 (p) A 1 (k) @3, (p + q- k, p), (12) 

where Wij(p) = o2E(p)/opi8Pi· Since in a normal 
metal the current in a constant magnetic field is 
zero, we have 

2eT ~@3"' (p + q, p) V; (p) 
o>,p 

- 2e2T ~ W;j (p) A1 (k) &w (p + q- k, p) = 0. (13) 
p,k,w 

Subtracting (13) from (12) we obtain for current 
density 

j; (q) = 2eT ~ @3~2> (p + q, p) V; (p) 
o>,p 

o>,p,k 

where @3~> is a correction quadratic in ~ to @3w. 

We seek the current density accurate to terms 
linear in q•v, k·v, and A·v, inclusive. With this 
accuracy, the second term in (14) vanishes and 

j; (q) = 2eT ~ @3<2> (p + q, p) V; (p). (15) 
w,p 

Substituting @3<2> from (5) in (15) and carrying out 
calculations similar to those before, we obtain for 
j (x) = 2)qeiq·x the expression 

h (x) = {_!!___ [ Q (x) V'iQ* (x) 
mki 

- Q" (x) V'i Q (x)l 
4e2 [ Q (x) \2 A1 (x)} 

C, 
mkf 

_ 7~(3)ep \dcrp 
C-12(2n)ar• ~ vp· 

The system of equations obtained corresponds to 
the phenomenological scheme obtained by Ginzburg 
[ 2]. The connection between the function 1/J(x) in
troduced in [2] and our Q(x) is given by the rela
tion 1/J (X) = rc Q (X). An important factor in the 
equations obtained, however, is the doubled charge 
2.e, which corresponds to the fact that 1/J(x) has 
the meaning of a wave function of a Cooper pair. 
Taking this circumstance into account, we can use 
directly Ginzburg's formulas [2] for the physical 
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quantities, in which we make the substitution e - 2e. 
The best method of determining the mass ten

sor seems to be measurement of the anisotropy of 
the depth of penetration near T c· There are ap
parently no such data at present. The data on the 
anisotropy of the surface tension ~ are less defi
nite in this respect. According to Sharvin and 
GantmakherC7J the quantity (~[110]- ~[001])/~ 
for tetragonal tin is 20-25%. Inasmuch as ~ 
(/)m-112, we get ~m/m~ 50%. 

Several recent results (for example, data on 
the absorption of ultrasound [8 J) show that the 
anisotropy of the energy gap itself is quite small. 
From Hohenberg's estimates [9] of the impurity 
dependence of T c it follows that for aluminum 
[~2(n)- (~(n))2]/(~(n))2 is of the order of 10-2 

In this case the anisotropy of the mass tensor 
characterizes the anisotropy of the energy spec
trum of the normal metal. In light of this, the 
large anisotropy mik obtained by Sharvin and 
Gantmakher [8 ] becomes quite understandable. 

The authors are grateful to Yu. V. Sharvin for 
a useful discussion. 
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