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We study the structure of those singularities in nonlinear electrodynamics whose trajectories 
are nearly uniform. Equations of motion for the singularities are obtained in this case and 
it is shown that the uniform and rectilinear motion is stable with respect to perturbations 
for an arbitrary choice of the Lagrange function for the electromagnetic field. Mass renor­
malization, generally speaking, upsets the stability of this motion. 

INTRODUCTION 

THE structure of the singularities and their mo­
tion in nonlinear electrodynamics have been con­
sidered previously[!] under the assumption that 
the radius of curvature of the 4-trajectory was 
large compared with the "singularity radius." 
It is the purpose of the present work to study the 
structure of the singularity when its motion de­
viates little from uniform and rectilinear motion. 

Under these conditions the dynamical principle 
formulated in [i] leads to equations of motion for 
the singularity that are nonlocal in proper time. 
These equations of motion satisfy the principle of 
causality, if one uses the retarded boundary condi­
tion in solving the field equations, and permit one 
to study the question of stability of uniform and 
rectilinear motion with respect to small perturba­
tions. It turns out that this motion is stable for 
any choice of the Lagrange function for the non­
linear electromagnetic field. However when mass 
renormalization is carried out ( i.e., when a mass 
of non-field origin is inserted into the equations of 
motion) the stability of the uniform and rectilinear 
motion is, generally speaking, upset. 

1. FIELD STRUCTURE IN FIRST APPROXI­
MATION 

As was shown in [i] the variational principle, 
formulated for the Lagrange function L ( J 1, J 2 ) 

(J1 = - 1/4 F~v' J 2 = - 1/4EIJ.VA.pFJ.1YFA.p' F1LV-the 
electromagnetic field tensor) leads to the follow-
ing equations for the electromagnetic field: 

(1) 

where x1 = oL/oJ1, x2 = aL/oJ2 and (f.J.vA.) is an 
abbreviation for the terms obtained from oFI-'11/Bx>., 
by cyclic permutation of the indices. 

. Denoting by ~IJ. ( T) ( T is the proper time, i.e., 
~~ = -1) the parametric equation of the world line 
of the singularity and introducing in place of the 
variables xf.J.' characterizing the point of space­
time, the variables TJ f.J. _( x), T ( x), related to x IJ. 
by TIJ.J. = xl-'- ~IJ. (T), TJ~ (T) = 0, one can trans­
form the field equations (1) to the form[1 J 

. . a 
( l'lvA + SvSA) ai')A (xlF !J.V) 

~ {a .. · a \ 
- 1 +v1l~ a:r('XlF!J..)+('IlsH~.a11 ~. (XIF~'-v)j 

- F a(38af3AIJ. {(l'll.v + ~A~v) ~~: 

- 1 ~~~· [ aa~ + ('11~) ~v ~~: J} = 0, 

.. afAv ~1'- [afAv .. · afAv] 
(l'l!J.P + 6~'-sp) a11p - 1 +'11~ a:r + ('116) Sp a11p 

+- (f.LvA.) = 0. (2) 

Unlike in [i J we look in the present work for 
solutions of (2) in the form of an expansion in 
powers of a parameter that characterizes the de­
viation of the trajectory ~I-' ( T) from rectilinearity, 
and confine ourselves here to the first approxima­
tion. From the point of view of expansion of the 
field in the curvature of the 4-trajectory, the first 
approximation corresponds to the taking into ac­
count in the expansion of the field of all terms of 
the form 

f r:(n) r:(n)i r:(n) 
~l-L' ••• , :,~ , ••• , ~:,~ :,v, ••• , 'op. 'T}v, ••• , 

but neglecting all terms of the form 

This means that we must look for a solution of the 
Eqs. (2) in the form F IJ.V = F~11 + F~11 , where 

1117 
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is the field of the zeroth approximation, determined 
in [t] ( e = 4rrC is the charge of the singularity) 
and 

00 

F~v = ~ dr:' {gl (TJ, T: - r:') [~p.(r:') ~v (r:') - ~v (r:') ~p. (r:') J 
-oo 

+ g2 (TJ, T: - r:') (TJt (r:')) [~p.(r:') T)v - ~v (r:') T)p.] 

+ g3 (TJ, T:- r:') [~p. (r:') T)v- ~v (r:') T)p.]} (3') 

is the first approximation determined by three un­
known functions g1, g2, g3 of two variables TJ• T. 

The various moments of the functions g1, g 2, g3 

with respect to the variable T represent certain 
of the coefficients in the expansion of the field in 
the curvature of the 4-trajectory. 

According to Eq. (2) the equations for the first 
approximation F~v have the form 

. . aF~v · aF~v . . 1 a In X~ 
( 6v).. + sv£)..) a'l).. - sv a:r + ( 6v).. + sv£)..) F ~'-" ~ 

+ (6v).. + ~v~)..) f~v _aa In X~ - ~vF~v aa In~= 0, 
'l;>. X1 T X~ 

. . aFt" . aFt. 
(6p.p + Sp.Sp) a'lp - £~'- a;r + (f.tvA.) = o, (4) 

where X~= Xt (z 2/2, 0). 
It is easy to see that the second of these equa­

tions gives rise to the following relation between 
the functions g1, g2, g 3: 

1 ' . 1 ( ) flg1 +g2 +ga +11 z6 (r:) = 0, 5 

where the prime means differentiation with respect 
to TJ and the dot-differentiation with respect to T. 

Noting that, according to Eq. (3), 

we transform the first of the Eqs. (4) to the form 

z a [ o 1 ( 2 z' )] +-TJp.- (Jl-Jl)- -+- = 0 
T] aT zz' T] Z ' 

(4') 

where J 1 - J~ = - 1/2FtvF~v\= -(z/TJ)~11TJvF~v· 
Substituting into Eq. (4') the expression (3') for 

F~v we obtain 

00 

~ dr:' {A (rt, r:- r:') 'Yip. (rt~ (r:')) 
-00 

+ B (TJ, r: - r:') ~~'- (r:') (rt~ (r:')) 

+ c (rt. 't - r:') ~p. (r:')} = 0; 

A=- __!__g·- g2 + _!_g3 (~ + ~) 
'1 3 '1 '1 z 

B 2z { ' 2 , 2 ( z" 1 ) 
= TJ•z' gl - T) g2 + T) 7 - TJ g2 

(6) 

(6') 

It follows from Eq. (6) that A = B = C = 0. 
In this way we obtain finally the following sys­

tern of equations for the determination of g1, g2, 

g3: 

g~ -T)2g~ + TJ2 ( ~: - ~ ) g2 + ( ~ - ~·: - *) gl = 0, 

, · · 1 · z' 
g3 + 'llg2 = 0, g2-1fg1 +TiZga = 0, 

~ g~ +g2 +ia+ ~ 6 (r:) = 0. (7) 

Since the coefficients of the unknown functions 
in these equations are independent of T it is con­
venient to Fourier-transform in that variable: 

00 

( ) - 1 \ ( ) -io" d · - 1 2 3 g1 rt. r: - 2:n: .\ g1 TJ, ro e ro, t - , , . 
-oo 

The Fourier coefficients gi ( T/• w) satisfy, ac­
cording to Eq. (7), the following system of ordi­
nary differential equations: 

g~ -; T)2g~ + T)2 ( ~: - ~ ) g2 + ( ~ - ~: - ~ ) lJ1 = 0, 

' . 0 iwz ( 2 ) 0 
g3- 100'llg2 = • g3- TJz' TJ g2- gl = ' 

g~ + rtg2 - irortg3 + z = 0. (7') 

It is easy to see that the first of these equations 
is a consequence of the second and third. Ex­
pressing therefore g1 and g2 in terms of g3 

from the second and third equations: 

(8) 

and substituting these expressions into the fourth 
of Eqs. (7), we find that g3 ( T/• w) satisfies the fol­
lowing second order differential equation: 

g" + -- - g' + ro2 -- - +- - - ga ( 2 z' ) [ z' ( 1 z" z' )] 
a '1 z 3 ZTJ z' z 

+ iro !._ = 0. 
'1 

(9) 
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Equations (8) and (9), combined with formula (3'), 
solve the problem of determining the field of one 
singularity in the first approximation. 

2. EQUATIONS OF MOTION OF THE SINGU­
LARITY IN THE FIRST APPROXIMATION 

The equations of motion of the singularity may 
be obtained from the dynamical principle: 

lim t ,\', T l"v dfl.v = 0, 
S-+0 1 (10) 

where dfAV is an element of the surface S that 
surrounds the singularity and lies in the hyper­
plane orthogonal to ~; Tf.'V is the field energy­
momentum tensor: 

Choosing a sphere as the surface S we express 
the dynamical principle (10) in the form 

lim 'YjT !"v'llv = 0, 
1)-+0 

where the bar denotes averaging over angles: 

- 1 M f = 4rc 'f f do. 

(10') 

In the approximation under consideration F f.'V 
= F0 v + F~v +fiJ-I" where ff.'v was defined in [1] and 
re/resents the effect on the field near the singu­
larity being discussed of other sufficiently distant 
singularities. The contribution to the equations of 
motion of the field fl-'v is equal to [1 J 

Jim 'Yj (T !"v'llv)f = - C{~v~v, (12) 
1)-+0 

where f~v is the field of all remaining singulari­
ties under the assumption that the singularity 
being discussed is absent ( C = 0). 

The contribution to lim 7JT11 v1J v from the self 
T)---.. 0 ,.. 

field F~v is calculated quite simply if it is noted 
that in the approximation in question 

L = L (1/2z2, 0) + (J1 - J~) X1 (1/2z2, 0), 

X1 = X1 (1/2z2, 0) _ ___;_ (2 + £) (J 1- J~) X1 (1/2Z2, 0), zz lJ z 
0 .z • 1 -

Jl- J1 =-f) s~"'llvF~"v' '11~" = 0, 
-- lj2 .• 
'll .. 'llv = 3 (<'l .. v + s .. sv)· 

As a result of the calculations we obtain 
co 

lim 'Yj (T !"v'llv)F' = -} C2 \ g (0, 't' - t') ~I" ('t') dt', 
1)~ ~~ 

Cg ('11, 't) =.g1 ('11, 't) + :z, ['Yj2g2 ('11, 't) - g1 ('11, 't)l. (13) 

The Fourier component of this function can be, 

according to Eq. (8), expressed in the form 

g ('Yj, w) = iwzC (ljg3 ~lJ, wl)'. (14) 

According to the dynamical principle (10') and 
Eqs. (12) and (13), the equations of motion of the 
singularity take the form 

co 

f C2 ~ g (0, 't - t') ~I" ('t') dt' = C{~v~v· (15) 
-co 

It is easy to show that if g 3 ( 1), w) satisfies 
Eq. (9) then the function g ( 1J• w ), defined by Eq. 
(14), satisfies the equation 

z _!!:_ _1_ dg + w2g = 0. 
dlJ z dlj 

(16) 

To find the boundary conditions to this equation 
we note that for 1J _...... oo the solutions of the non­
linear equations should go over into solutions of 
linear equations corresponding to the motion of a 
charge e along the trajectory f,JJ. ( T). 

It is not difficult to find that in the linear theory 

g 3 ('Yj, w) = - ~~" {1 + (± iw'Yj - 1) e±'""'} 

and, consequently, g(1J, w) = T)-1e±iw7J, where the 
+ sign corresponds to advanced, and the - sign to 
retarded, solutions. Consequently the function 
g ( ry, w) should satisfy the following boundary con­
dition: 

( ) 1 ~. g 'Yj, w ___, -e~'"' 11 , '11 __. oo. 
lJ 

(17) 

It is easy to verify that the asymptotic behavior 
(17) is not in contradiction with Eq. (16), since 
z _...... C/1) 2 when TJ- oo. Together with the boun­
dary condition (17) Eq. (16) determines U!liquely 
the function g ( TJ• w). 

In the following we confine ourselves to the con­
sideration of boundary conditions corresponding to 
retarded solutions. It can be shown that the func­
tion g ( 1), w) [and, consequently, also the function 
g ( 0, w) ] analytically continued into the upper half 
of the w plane, has no poles in the upper half 
plane. In addition, it follows from Eqs. (16), (17) 
that g ( T), w) has no other singular points and falls 
off exponentially for w _...... oo, Im w > 0. Therefore 
the function 

vanishes for r < 0: 

g (0, 't) = 0, 't < 0. (18) 

With Eq. (18) taken into account Eq. (15) takes 
on the form 
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~ + C2 ~ g (0, 1.'- 1.'') ~JL ('t'') d,;' = Cf~v~v· (15') 
-00 

This equation shows that a change in the field 
after the instant of time T can have no effect on 
the motion of the singularity up to the instant of 
time T. In this fashion the principle of causality 
is connected with the absence of poles in the upper 
half plane for the function g ( 0, w), and with the 
use of the retarded boundary conditions. 

3; STABILITY OF UNIFORM AND RECTILINEAR 
MOTION 

The question of stability of uniform and recti­
linear motion (the question of self-acceleration of 
a charged particle) has been discussed by Frad­
kin[2J and Natanzon[ 3] under the assumption that 
the charge is spread out in some fashion in space 
( nonlocal theory). In nonlinear electrodynamics 
with a point singularity this question is solved 
rather simply and is connected with certain analytic 
properties of the function g ( 0, w). 

Let f0 ( T) = Cf,~~~~ = 0 for T < 0. Then the 
t . J-1- ,.. 

equa wn 

-00 

is satisfied if 

(19) 

For T > 0 we then have 
~ 

fc 2 ~ g co, 1:- ,;') ·~" (1:') d,;' = t~ (1:), -r > o. (20) 

Since according to Eq. (18) 

00 

g (0, w) = ~ g (0, 1:) e'"''d't, 
0 

then 
('() 

g(O, ip) = ~ g(O, ,;)e-P•d,; R.ep>O, 

is the Laplace transform of the function g ( 0, T). 
The solution of Eq. (20) has, therefore, the form 

.. 3 "1'oo fo (p) 
£" (1:) = 4niC2 .\ eP' g (o, ip) dp, (21) 

a-ico 

where f~ ( p) is the Laplace transform of the func­

tion f~ ( T) and u > 0 lies to the right of all the 
zeros of the function g ( 0, ip), considered as a 
function of p. 

It follows from Eq. (21) that for the stability of 
uniform and rectilinear motion it is necessary that 

the function g ( 0, w) have no zeros in the upper 
half plane of the variable w. 

Before proceeding to the proof of the absence 
of zeros of g ( 0, w) in the upper half plane, we 
note that from the equation satisfied by the func­
tion z ( T/) 

X (0, 0) = 1, 

follows the absence of zeros of z ( T/) in the inter­
val 0 < T/ < oo, Therefore the function z ( T/) is of 
constant sign in the interval 0 < T/ < oo. 

And so let w lie in the upper half plane. Then, 
upon multiplication of Eq. (16) by g* /z and inte­
gration over T/ using the boundary condition (17), 
it is easy to obtain the equality 

From here it is seen that g ( 0, w) cannot 
vanish in the upper half plane because if it did 
then there would follow the relation ( z has con­
stant sign!) 

which contradicts the assumption that w lies in 
the upper half plane. 

Thus, for any choice of the Lagrangian of the 
nonlinear electromagnetic field, uniform and recti­
linear motion of the singularity turns out to be 
stable. 

The function g ( T/, w) may be expanded in 
powers of the variable w (see Appendix): 

00 

' r· 
g<ol(l]) = y ~ zdl], 

1] 

00 

n=o 

g(l) (lJ) = i, ... (23) 

The expansion (23) is valid if the radius of curva­
ture of the 4-trajectory (proportional to w-1 ) is 
large in comparison with the "singularity radius." 

Keeping in the expansion (23) only the first two 
terms: 

g (0, w) = 8~'3C" I • m -rrw, 

where m is the singularity mass,Ci] we find that 
g ( 0, w) has an apparent zero in the upper half 
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plane. One can, however, attempt to obtain an 
exact expression for g ( 0, w) in the linear theory 
by means of renormalization of the mass of the 
singularity. Denoting by m 0 the mechanical mass 
we obtain for the function g ( 0, w) the expression 

00 

g (0, <D) = s!cz mo + 2J wng(n) (0). 
n=O 

Choosing m 0 so as to make in the limit of the 
linear theory m 0 + m equal to the given quantity 
M > 0 ( m 0 + m - M), we find 

lim g (0, w) = 8 
3c2 M + i<D = 6~ M + iw. 

L-J~ rt e 

In this fashion mass renormalization leads to 
the appearance of a zero for g ( 0, w) in the upper 
half plane, and consequently to self-acceleration 
of the singularity. 

In conclusion the authors express their gratitude 
to A. I. Akhiezer for interest in the work and to 
P. I. Fomin for discussion of results. 

APPENDIX 

Consider the expansion of the function g ( TJ• w) 
in powers of w: 

00 

n=o 

It follows from Eqs. (16), (17) that g(n) ( TJ) 
satisfies the following equations and boundary 
conditions: 

Z _!!__ _1_ dg(n) -L (n~2) = 0 
d1'] Z d1j I g ' 

g(~2) = g(~I) = 0, 

g (11) _,. _t_ - 1 (i11r + o (____!____) 
n n! 1'] 1'] ' 

11-+oo, n=0.1,2, ... 
(A.1) 

where 0 ( liTJ) are terms of smaller order than 
l/T} when TJ- oo. From Eq. (A.1) it is easy to 
find the explicit form of the functions g< 0>, g<1l, 

00 

1 " 
g(o) (11) = c ~ zd'!], g(l) (11) = ± i, 

1';:' ~ ( 1r ) 1f 
g(2) (11) = c ~ zdTJ ~ dT] T]- z .\ zdT] + zc .l (TJ2Z- C) dT]. 

11 11 11 11 (A.2) 

The + sign for g<1l in the formula corresponds 
to retarded, and the - sign to advanced, boundary 
conditions. The expansion (23) in powers of w 
is valid if the radius of curvature of the 4-trajec­
tory is large in comparison with the "singularity 
radius." 

Making use of Eqs. (8), (14), (A.2), it is easy to 
find expressions for the quantities g1 ( T/• w), 

g2(TJ. w), g 3 (YJ, w) for w = 0: 

00 co 

g1 (T],0)==~ ZdT]-+{~ dl](T]-+~ ZdlJ)++lJ2}, 
1l 1l 1l 

co co co 

1 (' ' 1 ( z ) ' {\" ( 1 (" ) 1 2} g2(lJ,0)=Y)2.)Zdl]:Yl Yl .)dl] l]--;-.\Zdl] +--yll, 

(A.3) 

These formulas coincide with Eqs. (16), (18), 
(19) of [1], in which, however, the constant of inte­
gration C1 has now been determined. 

The quantity g< 0> ( 0) is related to the mass of 
the singularity, m, by the formula[!] 

00 

(0) (0) - _3- - ____!____ \ d g - 8nC2 m - C .l 2 lJ · 
0 

Taking into account Eqs. (23), (A.2) we find 

g(O, w) = s:C" m± iw +... (A.4) 

The equations of motion (15'), according to (23), 
have the form 

00 T c2 2J ing(n) (O) ~(n+2l (-r) = q'-e~ •. 
n=o 

If one keeps in the expansion of the equations of 
motion in the curvature of the 4-trajectory the 
term following the radiation reaction force, and if 
one takes into account that ~~ = -1 for arbitrary 
T, then, according to (A.2), one obtains 

.. o • ez . ... . .. ... . .. ... . ... 
m£~'- = ef~'",£" ± 6n (£~'-- £~'-£ 2) + b (£~'-- 3£~'-£,£v) + d£~'-£2 , 

where 
(A.5) 

00 00 00 00 

b=+e{~ zdl]~ dl](l]-+~ ZdlJ)++~ (l] 2Z- 4~ )dl]},• 
0 1l 1l 0 

and the constant d can not be determined from the 
formulas obtained here. 
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