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It is shown that in the quasipotential method recently proposed the second Born term for the 
scattering amplitude does not satisfy the Mandelstam representation if the mean particle 
radius is independent of the energy. 

1. In a series of recently published papers [t- 3] a 
"quasi-optical" approach to the scattering of ele
mentary particles is proposed, which permits an 
investigation of the nature of the bound states, de
velopment of a method for calculating the effec
tive cross sections, etc. The method makes 
liberal use of dispersion relations. Consequently, 
a study of the analytic properties of the amplitude 
within the framework of tpe new theory is quite 
timely. 

The principal equation of the quasi-potential 
approach 
[£2 _ p2 _ m2) y p2 + m21J' (p) 

-~V [£, (p- p')2ll¥ (p') dp' =0 

makes it possible to write for the scattering 
amplitude A ( p1 p2 ), which is connected with the 
S matrix by the formula 

S = f + (in/2£2) o (E- £')A, 

an equation of the Lippmann-Schwinger type 

A (PtP2) = V (Pt - P2) 

I _1_ ~d V( - ) A(pp,) 
1 (2n)a P Pt P ,r 2 _L 2 ( 2 2) · r P 1 m P - P2 

(1) 

(2) 

The first possibility consists in finding the re
gion of analyticity of the amplitudes A as a whole 
on the basis of the Fredholm method, applied to 
Eq. (2). Such a possibility is realized in C4J. It ap
pears useful, however, to study in greater detail 
the structure of the function A by using Born 
iterations. The calculation of the second Born 
term corresponding to Eq. (2) can be carried 
through almost to conclusion, and the resultant 
formulas yield directly the character and position 
of the singularities of the amplitude. This is the 
purpose of the present article. 

The second term of the Born series for (2) is 
of the form 

A<2l (PtP2) ~~V (Pt- p) fp2 +~2 (p2 -s)V (p- P2). (3) 

We use the following notation: s = PI = p~, t = 

- ( p 1 - p2 ) 2 = -2s ( 1 -cos () ). For simplicity we 
choose a Yukawa potential 

(4) 

However, the results of the paper apply also to a 
superposition of Yukawa potentials with weight 
function u that depends on the energy, and gen
erally speaking is complex: 

co 

V (s, t) = ~ dv ~v(~v; 
1-' 

(these are precisely the superpositions used in 
the quasi-potential description of scattering). 

(5) 

It will be shown below that the amplitude A <2 l, 

as a function of s for fixed negative t (in the 
physical region), is analytic everywhere in the 
complex s plane, with two cuts along the positive 
real axis and part of the negative axis. When 
0 < t < 4ti, the start of the left cut shifts (an 
"anomalous threshold" of sorts appears). When 
t > 4p2, the anomalous singularity goes into the 
region of complex s. For fixed real s, the ampli
tude A (2) has as a function of t only a cut along 
the real axis, the position of the cut depending, 
generally speaking, on s. Thus, the amplitude A (2) 

does not satisfy a representation of the Mandel
starn type. 

We note also that the structure of the second 
Born approximation has a direct analogy with the 
structure of the Feynman triangle diagram, and 
therefore many calculations of the singularities 
of the function A (2) are analogs of the correspond
ing singularities of the triangle. 

2. We proceed to a direct calculation of A (2). 

Substituting ( 4) in ( 3) we get 
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~ ~ (p,-!)2 +1-l' fp2 -j-~;(p'-s) (P-Pz)'+l-l2 • ( 6 ) 

We represent the root .j p2 + m2 contained in (6) 
in spectral form 

00 

1 1 \' d~ 1 
y p' + m2 = n ~ y~ p2 + m' + ~ 

0 

and use the partial-fraction expansion 

p2 + m' + ~ p2 - s 

(7) 

s + m' t- ~ [ p2 + r!z2 + ~ - p3 ~ s] · ( 8 ) 

Substituting ( 7) and ( 8) in ( 6) we find that A (2) 
breaks up into two terms: 

oo - Aw 
A(2l~_!_\ A(st~)d~ __ N.R.Cst) 

Jt 0 V~(s-j-m2 +~) Vs+m2 ' 
(9) 

Here A~~R. ( st) coincides with the second Born 
approximation for the usual Schrodinger equation 
with Yukawa potential. It is well known [5,sJ that 
A~:R. satisfies the Mandelstam representation, 
and the cut in the complex plane encloses the en
tire real positive axis. The corresponding term 
in our expression differs from A~:R. only in the 
factor ( s + m 2 ) -t/2, which adds to the known 
singularities only the kinematic singularity 
s == -m2• We therefore concern ourselves with the 
first term in the right half of (9), which reflects 
the specific nature of the initial equation. 

Disregarding the kinematic singularities, which 
are connected with the zeros of the denominator 
in the integral with respect to ~, we consider the 
function A. It is of the form 

- ~ \ 1 1 1 
A (st\;) = J dp (p,- p)' + 1-l' P' + 1.' (p- Pz)' + 1-l' 

(10) 

It is easy to see that Expression (10) is simply 
related to the Feynman triangle diagram. In fact, 
if the diagram (see the figure) is represented by 
the formula J dp0 f ( p0, M1, M~, M~), then Expres
sion (10) is equal to f( 0, -s, -s, t). It is known[7J 
that the singular points of the triangle are deter
mined by the singularities of the function f for 

-s -s 

p 0 == 0. It is therefore natural to expect the func
tion (10) to have the same singularities as the 
diagram in the figure. We note in this connection 
that since the integral (10) can be evaluated com
pletely, the final formula is of additional interest 
as an explicit expression for the vertex part in 
the third order perturbation theory, for the case 
of three-dimensional integration over the internal 
momentum (we shall henceforth call a function of 
the type (10) a "three-dimensional" vertex). 

Using the well-known a-representation and 
integrating with respect to p in ( 10) we get 

1 

A (s t) ~Ida da da 6 (1 - et,- etz- eta) 
~ 1 2 3 [Q (s, I, et1, et2 , eta)]'/,' 
0 

where Q is given by 

Q = s (a2 + a 3) a1 - ta2a3 + fl 2 (a2 + a 3) + ;l,2a1. 

Integrating with respect to a 3 with the aid of the 
o function, we arrive at 

_ 1~ 1-~cx, 1 
A = da1 daz , • 

[Q (s, t, et,, etz, 1- et,- etz)] h 
0 0 

(11) 

Integration with respect to a 2 in (11) leads to 
the tabulated integral 

and yields 
1 

A (s t) = ~ da1 

1- et1 
x----------------------~~----~~---

[ s::t1 (1 - et1) -!- 11' (1 - ::t1) + A2et1- -} (1 - ct,)'l] Jl Q lt=o 

(12) 

This integral can be readily reduced to the form 

where p and q are the roots of the quadratic 
trinomial in the denominator of ( 12), taken with 
opposite signs, while the coefficients a, b, and c 
are determined from the expansion of Q [t==o in 
powers of a 1• Expanding (13) in partial fractions, 
we reduce it to a linear combination of two tabu
lated integrals. 

Simple but cumbersome calculations lead to 
the following final expression: 

A (st) = con~ In K + L~-; (14) 
VRt I(- VRt 

K = 'A (4J.12 - t) + 2fl (s + 'A2 + fl2), (15) 
R = - '}..2 (4fl2- t) + (s + '}..2 + fl2)2. 

Using the conventional variables for the vertex 
diagram 
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x = (2J.t2 - t)/2J.t2, y = z = (/,2 + J.l-2 + s)/2AJ.t, 

we rewrite (15) in the form 

A (s t) = 

X In 

const 

V x2 + 2y2 - 2xy2 - 1 

1 + x + 2y + V x"' + 2y• - 2xy2 - 1 

1 + x + 2y - V x2 + 2y2 - 2xy2 - 1 
( 16) 

In the general case when all the masses on the 
external lines of our three-dimensional vertex 
are different ( y ,rc z) we would have in place of 
(16) 

const 
12! (xyz) = 

V x2 + y2 + z2 - 2xyz - 1 

I 1 + x + y + z + V x2 + y2 + z2- 2xyz- 1 
X n , 1 , 

' 1 + x + y + z- y x2 + y2 --r z2 - 2xyz - 1 

which is indeed the explicit expression for the 
three-dimensional vertex part in the lower order 
of perturbation theory. It is easy to ascertain that 
this expression contains all the singularities of 
the triangular diagram and has no other singulari
ties. 

3. The specific singularities of the second 
Born approximation for the scattering amplitude, 
corr.esponding to (2), are contained in the function 
( 14). The singularities of A ( st) can be due to the 
zeros of ( Rt )1/2 and to the singularities of the 
logarithm, that is, to the zeros of the expressions 
K + 1 Rt) 112 and K - ( Rt) 112• The position of these 
latter singularities is given by a single equation 

K2 -Rt = 0. (17) 

Recalling (15), we find for the roots of !17) 

s = -(A + J.t)2 (y = z = - 1), 
t = 4J.t2 (x = - 1), 

which corresponds to a stationary left-hand cut 
along the real s axis and a stationary right-hand 
cut along the real t axis. In terms of the triangle 
diagram, these cuts correspond to the "physical" 
thresholds connected with the violation of the 
stability condition at the vertices of the triangle. 

We proceed to an investigation of the root 
singularities 

R = [s + (A2 + J.l-2 +A Jf4J.t2 - t)l 

X [s + (A2 + J.l-2 - A Y4J.t2 - t)l 

= (s - s_) (s - s+) = 0. 

We fix 0 < t < 4J.L2 and regard A as a function of 
s. The physical sheet is identified by the condition 
that A be real at large s. It is easy to verify that 
on the chosen sheet the point s = s + is not a sin
gularity of A ( s ). Indeed, as s moves towards s + 

from higher positive values, the argument of the 

logarithm in (14) tends to unity, remaining real, 
and we should take in the formula ln 1 = 2inn 
the principal value n = 0. Therefore the expan
sion of the logarithm in powers of ( Rt) 1/ 2/K in 
the vicinity of s + will contain only odd powers of 
( Rt) 1/ 2, and the expansion of the complete func
tion A only even powers. With further variation 
of s from s + to s_, the argument of the logarithm 
becomes complex, varying along the unit circle 
and returning to unity with a circuit around zero. 
It is therefore clear that the expansion of the 
logarithm in the vicinity of the point s_ in powers 
of ( Rt )1/ 2 will begin with the free term ln 1 = 2rri. 
Because of this, the series for the function A ( s ) 
in the vicinity of s_ will contain, in addition to 
the even powers of the root, also a term of the 
form 2rr/V -Rt, which leads to a singularity of 
A at the point s = s_. 

Thus, one of the branches of the surface R = 0 
is singular. We write 

s_ = - A2- J.l-2- A V 4J.t2- t. 

We see that when 4J.L2 > t > 0 this singularity 
goes onto the physical sheet (in terms of the tri
angle diagram-an anomalous threshold appears), 
and when t = t 0 + i£ ( t 0 > 4J.L 2 ) the singularity goes 
over into the complex plane 

s_ =- /,2 -J.~-2 + iA Vto- 4J.t2, 

which is also in full correspondence with the 
known results of the analysis of the triangle dia
gram. 

The point 

s+ =- A2- J.l-2- iA V to- 4J.t2 

will not be singular in this region of t. When t is 
fixed on the other edge of the cut ( t = t 0 - i£ ) , the 
singularity goes over to the lower half plane 

s_ =- A2 -J.t2 - iA Yto- 4J.t2. 

It is therefore clear that the spectral density in 
the dispersion relation for A with respect to t 
will contain two branch.points symmetrically 
located with respect to the real axis. ( This can 
already be seen from the fact that the aforemen
tioned spectral density is proportional to R- 1/ 2 

as can be readily understood.) 
Thus, the Mandelstam representation is vio

lated for A. This is the consequence of the well
known occurrence of anomalous singularities in 
the triangular Feynman diagram. In general, from 
:the discussed analogy with the triangle it is quite 
clear that the singular surface for A ( st) is given 
by the equation ex+ 2ey = 2n; ex= cos-1x; 
ey = cos- 1 y. Therefore no complex singularities 
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arise in the t plane for any real s, and the singu
larities in t are confined to the cut along the real 
axis which, generally speaking, moves. 

Let us return to the total amplitude A (2), which 
is obtained from A by integrating with respect to 
~ in (9). It is easy to ascertain that all the singu
larities of the function A at II. 2 = m 2 ( ~ = 0) re
main also after integration with respect to ~. 

Indeed, the equality 11.2 = m 2 ( ~ = 0) corresponds 
to the end point of the contour of integration with 
respect to ~. Therefore an analytic continuation 
of the amplitude A (2), say to values s = s_J ~ =o 
by deformation of the contour is impossible. This 
can also be readily seen directly. Indeed, as s 
approaches any of the mentioned danger points, 
the integral (9) becomes arbitrarily large, some
thing possible only when these points are singular. 
It is easy to understand also that all the foregoing 
arguments apply also to the case of the potential 
( 5). 

4. Let us indicate in conclusion a possibility of 
retaining the Mandelstam representation within 
the framework of the quasi-optical approach. The 
weight function cr of the potential ( 5) depends on 
the energy s. We are therefore justified in as
suming that the lower limit of integration in (5) 
also varies with energy: 11 = 11 ( s). At the same 
time, as already shown, the anomalous singulari
ties of the amplitude A (2) appear only when 
-s ~ 112• Therefore if we choose the function 11 ( s ) 
such as to satisfy, for example, the condition 
-s « 11 2 ( s ), then the complex singularities dis
appear. 

Thus, for example, the equality 11 ( s) = s 2/11 1 

+ 112 with suitably chosen dimensional constants 
11 1 and 112 ensures simple analytic properties for 
the amplitude A (2). We note that with such a 
choice of the energy dependence of 11 ( s), the left 
cut in the s plane likewise disappears. Of course, 
this choice is not unique. Physically, the use of 
potentials of the type ( 5) with variable lower limit 
is equivalent to assuming that the average radius 
of the particle depends on the energy. 
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