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The possibility of appearance of superluminal signals within the kinematics of the special 
theory of relativity is discussed. Conditions on the particle mass which must be satisfied in 
order for such signals to really exist are found. In particular, propagation of super luminal 
sound which assumes a macroscopic nature in strongly compressed matter can be described 
by a timelike mass tensor. A field theory model is considered which leads to unlimited 
growth of the ratio of pressure to energy density and hence to growth of the ratio of sound 
velocity to the velocity 'of light. It is found that sufficiently strong violation of microscopic 
casuality removes the gravitational collapse (contraction of large mass bodies and the 
universe as a whole to a point). 

1. As is well known, the limitations imposed on 
physical theory by the condition of microscopic 
causality (abbreviated mcc) consist in the absence 
of the influence of a given event on the events 
which precede it in time or which are separated 
from it by a space-like interval. The mcc in con­
junction with its corollaries (determined by the 
analyticity properties of the matrix elements of 
the processes) is the basis of the main trend of 
development of modern theory of elementary par­
ticles. 

Yet the question of the possible violation of 
mcc in small space-time regions (or, what is the 
same, in high-energy regions) has already been 
·raised many times. Such a violation, being suffi­
ciently localized, would not contradict the avail­
able experimental data on the interaction of ele­
mentary particles. The present paper contains an 
analysis of the possibility of constructing, in 
principle, a non-causal theory, and also some 
macroscopic effects due to non-causality. 

In usual relativistic quantum field theory, ow­
ing to the uncertainty relations and the impossi­
bility of realizing a point-like event, the concepts 
which are contained in the formulation of the mcc, 
lose their applicability in a region of size ~1/E, 
where E is the characteristic energy; we use 
ti = c = 1 throughout. Therefore the usual mcc is 
a far reaching extrapolation, and must be re­
garded as a purely mathematical condition, which 
ensures uniqueness of the procedure whereby 
physical quantities are calculated. This condition 

assumes a direct physical meaning only in the 
classical limit, or when the scale of the process 
decreases. Therefore the refutation of the mcc 
does not signify so serious a break in physical 
theory as one might think. 

This situation will become apparently even 
more aggravated in the future theory. It is as­
sumed probable that the usual notions of space­
time "in the small" will in the future be subject 
to definite changes. It is very likely that in this 
case the mcc will turn out to be even less repre­
sentative of the physical picture. Its applicability 
will then be limited not only by the size of the 
quantum of action, but also by the elementary 
length. 

The specific form of the corresponding changes 
is at present highly conjectural. We shall there­
fore speak in what follows of the violation of the 
mcc within the framework of existing space-time 
representations, corresponding to the kinematics 
of the special theory of relativity. 

2. The very possibility of such a formulation 
of the question is not universally recognized. It 
is frequently stated (see, for example, the paper 
by Kallen [1]) that relativistic invariance is based 
on the absence of superluminal signals and there­
fore the violation of the mcc 1) is incompatible 
with the Lorentz groups, by virtue of the need for 
reviewing the measurement procedure. Essen-

1\liolation of the mcc is equivalent in most cases to the 
appearance of superluminal signals. 
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tially analogous is the point of view according to 
which the difference between the classical and 
relativistic kinematics is that the former corre­
sponds to an infinite maximum velocity of inter­
action propagation, Vmax• and the latter to a 
finite velocity. 

It is easy, however, to present arguments 
(based on the works of the classicists of relativ­
ism) in favor of the possibility of appearance of 
superluminal signals in the relativistically in­
variant scheme. We introduce the concept of 
fundamental velocity Vf, which is invariant with 
respect to a transition from one inertial frame to 
another. It is just this quantity, and not Vmax• 
which determines the kinematics: finite Vf cor­
responds to relativistic kinematics, while infinite 
Vf corresponds to classical kinematics. The rela­
tive signal velocity and Vf can be arbitrary; the 
corresponding limitations arise only in the dy­
namics and are regulated only by the causality 
condition. 

The foregoing statements follow directly from 
Einstein's derivation of the Lorentz transforma­
tions. This derivation is based on the require­
ments of homogeneity and isotropy of space-time, 
the relativity principle, and the condition for the 
equality of the fundamental velocity Vf and the 
velocity of light. From this follows uniquely the 
kinematics of relativity theory. No special limi­
tations on the velocity of the signal arise in this 
case. These limitations are the consequence of 
the additional requirement of invariance of the 
time sequence of events on going to other inertial 
systems, that is, the causality condition (see the 
exposition by Pauli [2] ) • 

The measurement procedure (the synchroniza­
tion of the clocks, measurement of segments, etc.) 
should remain the same as in the absence of 
superluminal signals. The very appearance of 
such signals does not at all make unsuitable the 
old procedure, which used a signal moving with 
velocity vf. Moreover, the use of a signal moving 
with a different velocity, for example Vmax > Vf, 
would unavoidably lead to a non-closed procedure, 
since additional information would be necessary 
on the change in this velocity itself on going to the 
different frame. 

It must be emphasized that the velocity con­
tained in the Lorentz transformation (relative 
velocity of the two reference frames) cannot ex­
ceed Vf· Otherwise these transformations would 
lead to imaginary quantities which, in particular, 
would violate the principle of relativity. There­
fore the inertial reference frame cannot be con-

nected with a superluminal particle (nor with the 
photon). 

In light of all the foregoing, the known fact of 
existence of formally relativistically-invariant 
non-causal schemes becomes understandable 
(these include the nonlocal and nonlinear schemes 
(see [3- 6]), and also electrodynamics in a medium 
with £ < 1). 

3. The question of whether superluminal sig­
nals actually exist should be resolved by the dy­
namics. Bearing in mind the particle systems 
(or field systems) with sufficiently strong inter­
action, we must speak of the velocity of elemen­
tary excitations (quasiparticles). Here, along 
with the one-particle excitations, which go over 
into ordinary particles after the interaction is 
turned off, we must consider also quasiparticles 
with different quantum numbers. The latter in­
clude sound excitations2). 

In view of the necessary condition that the 
damping of the quasi particles be small, we must 
note that in the case of superluminal motions 
there appear additional methods for the decay of 
the excitation (the analog of the ordinary Cerenkov 
effect). This question calls for a special quanti­
tative consideration. 

Assuming henceforth the damping to be small, 
we write the general relation between the four­
momentum vectors Pi and the four-velocity 
vectors ui of the quasiparticle: 

p; = M;kuk + q;, 

where Nik is the mass tensor and qi is some 
vector. The identity uf = 1 gives the Hamilton­
Jacobi equation 

( 1) 

which contains all the dynamic information on the 
quasiparticle. In particular, its velocity is given 

' by the relation 
2 (oE )2 M~ (p- q)2 

v = iJp = M~ (p - q)2 + Mf (2) 

where for simplicity the mass tensor is assumed 
to be diagonal: Mik = ( M0, M1, M1, M1 ) and the 
quantities Mik and qi are assumed independent 
of p. 

It follows from (2) that superluminal velocity 
arises when one of the following conditions is 
satisfied (see [3]): 

2lin the non local theory with "rigid" form factor it is pre~ 
cisely such excitations that propagate with superluminal ve­
velocity. 
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a) M~=Mi<O, b) M~>Mi>O. (3) 

Case (a) was investigated in particular (as applied 
to free particles) by Sudarshan et al. [7J, who 
noted serious difficulty with the scheme having 
M2 < 0-the indeterminate sign (by virtue of p2 

< 0) of the particle energy. To eliminate this 
difficulty, an approach similar to that used by 
Feynman in his positron theory is proposed: ab­
sorption of a particle with E < 0 is replaced by 
emission of a particle with E > 0 and vice versa. 
The arguments presented in favor of relativistic 
invariance of this scheme, however, are patently 
inadequate. This follows at least from the non­
invariance of the commutation function D ( k) 
~ £(k0)o(k2 - M2 ) with M2 < 0 and from its 
vanishing outside the light cone. The latter con-

[41 tradicts the general statement -

<"lfo I [qJ (x), qJ (y)l!"lfo) = 0, (x- y) 2 < 0, 

which follows only from relativistic in variance. 
This statement, with account of the Lehmann 
representation, leads to the requirement that 
there be no states with p2 < 0 in the total system 
of stationary states. At the same time, such 
states are present in the scheme of Sudarshan 
et al.[7J (single-particle states). 

4. Variant (b) [see (3)], which corresponds in 
particular to the propagation of superluminal 
sound, is free of these difficulties. In the system 
where the medium is at rest, the law of disper­
sion of sound waves has the form E 2 = D2p2, 

where D is the velocity of sound. Introducing the 
four-velocity Wi of the medium we can write in 
the general case 

p2 = (1 - D-2) (pw)2 > 0. 

This equation is obtained from the general equa­
tion (1) by choosing the mass tensor in the form 

M;k = J.lo (gtk + (D- 1) WtWk), 

where llo--.. 0 (the acoustic spectrum corresponds 
to zero mass). In the rest system of the medium 
we obtain M ik = ( lloD, llo• llo• llo) that is, pre­
cisely the case (b) ( D > 1). 

Let us consider the expression for the velocity 
of sound D. Denoting by £ the energy density of 
the system and by p the particle-number density, 
we can readily obtain an expression for the pres­
sure 

P = p2 a~~P) • 

Stipulating that this quantity be smaller than 
unity, Zel 'dovich [B] and Saakyan [s] established 
the form of the equation of state of matter that 
has "limiting rigidity" and is compatible with the 
mcc 3l: 

P = const·p2 , P=e. 

A stronger dependence of P on p, or the in­
equality P /£ > 1, lead to superluminal signals. 

We emphasize that Eq. (5) is more stringent 
than the usually employed equation 

P = const · p'l•, P = ef3, 

(5) 

(6) 

which corresponds to a perfect gas. Equation (6) 
is of "limiting rigidity" only when applied to 
systems with electroma~netic interaction .wh.ich 
are neutral as a whole [ , in which the prmctpal 
term of the interaction drops out completely and 
the decisive role is assumed by the kinetic 
energy4l. In the presence of an uncompensated 
short-range interaction (nuclear forces) the latter 
begin to play a decisive role even in the nonrela­
tivistic region [to]. Further increase in the com­
pression only aggravates this situation and viola­
tion of Eq. (6) becomes unavoidable. 

If we admit the violation of the mcc, then the 
limitations expressed by relations (5) are lifted 
and the dependence of P on p and £ can be as 
stringent as desired. This pertains to the region 
of superhigh compressions, at which the average 
wavelength of the particle (or the reciprocal of 
the momentum transfer) becomes at least of the 
order of the elementary length. 

A characteristic feature of the indicated re­
gion of compressions, which has been in recent 
years the subject of great interest in connection 
with problems of baryon stars and presteller 
state of matter, is that microscopic violations of 
causality (if they occur in it) grow to macro­
scopic ones. This circumstance is manifest also 
in the change of such a macroscopic characteris­
tic of matter as its equation of state. 

It must be emphasized that such violations, al­
though they have a macroscopic character, appear 
only in strongly compressed matter, and a gen­
eral analysis will be treated in a separate paper. 

5. By way of a very simple example let us 
consider the pseudoscalar meson theory model 

3lStrictly speaking, relations (5) are valid only under the 
sufficiently natural assumption that in the limit as p --> oo the 
velocity of sound tends to the velocity of light. 

4lThis deduction is valid only if radiation effects are 
The velocity of sound D then takes the form 

D = (8Pj8e)'la. ( 4) neglected. 



MANIFESTATIONS OF VIOLATION OF MICROSCOPIC CAUSALITY 517 

proposed earlier by one of the authors (see [3]) to 
describe the repulsion of nucleons at small dis­
tances (hard core repulsion) in the problem of 
nuclear forces. The density of the Lagrangian 
L = L1 + L2 in this model, where 

Ll =-+ [(Vcp)2 + f.t2<p2], 

L2 = \j) (iv- M- Mfro<F + f y, Vcp + kcpyo"V) '¢, (7) 

is characterized by the dependence of the inter­
action on the nucleon momentum. Accurate to an 
inessential pseudovector interaction, there is 
presented the most general lineal Lagrangian, in 
which the interaction does not exceed the order 
of the derivatives of the field operators. 

The current density and the nucleon spin 
density 

j =fr (1 + ikcpy,)'IJ, ... ... 
sa.= i'i)ra.Ys (1 + ikcpy5) 'IJ, 

can be written in the usual fashion, by making the 
substitution ljJ - ( 1 + ik qry5 )- 1/2 ljJ. We then find 

L = 'iJ ( iv - M 1 + trsr.p ) '¢ ( 8) 
2 V1-k•r.p• 

for k 2cp 2 < 1. In the opposite case an additional 
substitution 1{! -- il{!y5 is necessary. The Dirac 
equation which results from (8) yields 

v ('i)r r '¢) = 2iM ljl(fr.p- rs> v. .,. 5.,. V1-k•r.p• 

The equation for cp assumes an essentially non­
linear form 

(9) 

( 10) 

Relations (7)-(9) were used in the derivation. 
It follows from (8) that the model considered 

corresponds to some nonlinear interaction, which 
leads to an increase in the effective mass of the 
nucleons with increasing cp, that is, as they come 
closer together. This corresponds to the appear­
ance of additional repulsion forces, which are the 
more intense the closer k2 cp2 is to unity. In this 
sense the model considered is close to the hard­
sphere model, which leads to the appearance of 
superluminal sound in small regions of space­
time. 

Being interested in the region k2cp2 ::::; 1, where 
the effective mass is large, we assume that the 
nucleons are at rest and consider the problem in 
classical fashion. 5) Accordingly 

5>The effects that are not taken into account in this case 
lead to an increase in the energy of the system, that is, to an 
even stronger violation of equations (5). 

('IJ'¢) <:::::: p = ~ {) (r- r;}, 
i 

where n is the unit vector along the quantization 
axis, and the plus and minus signs correspond to 
the two spin orientations. 

Using (8), (9), and (11), and leaving out the 
surface term, we can readily represent the sys­
tem energy in the form of a simple sum of the 
nucleon rest energies: 

1 + /2r.p~ )'/, 
E=M~f-2 , 

t \1-k•r.pi 
( 12) 

where cpi is the field at the point where the i-th 
nucleon is situated. We have left out here the 
meson-field energy, which is finite when k 2cpi = 1. 

To find cpi we substitute G) (11) in (10) and get, 
leaving out the self-action, 

where uij = ( Y4 7Trij) exp ( -~rij). Thus, the only 
contributiOns to ffJi are made by the nucleons for 
which 

(13) 

Assuming for simplicity that the orientation of 
the spin of all the nucleons is the same, we can 
assume that ffJi is independent of the index. Con­
sidering the vicinity of the point k 2 cp 2 = 1 and 
making obvious simplifications, we get 

[V;(1- k•cpn';,p ~ M2 (k2 + J2)•!k•j2. 

The solution of this equation can be sought in the 
form 

(1- k2<p~ )'1• =a~, r;j + b, 
j 

where a and b are constants and the summation 
is over the region ( 13) . 

Assuming that in the region ( 13) there are 
many particles ( p/~ 3 » 1 ), we have 

1/p. 

"5; (Vi,.ii) (Vk,.ik) <:::::: ~ dx P ~ p/f.t3 • 

jk 0 

Hence 

(1- k2<pt )'/, ~ M (k;kf j2) ( ~~ f' (1-~), 
where Po is a constant introduced in place of b 
and playing the role of the critical density at 
which the effective mass becomes infinite 

6>An analogous calculation was carried out earlier in the 
two-body problem (see the diploma thesis of B. A. Al'terkop, 
Saratov State University, 1960). 
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("contiguity" of the spheres). In the vicinity of 
point p = p 0 we obtai.n a final expression for the 
energy density: 

2 

e ~ ~ (Y_3_)'1' ~ 
k Po Po-p 

( 14) 

and for the pressure: 

P~&(£)';,~ 
k Po (po- p)2 " 

Hence 

Relations (15) and (16) obviously contradict (5), 
indicating the presence of superluminal sound. 

(15) 

( 16) 

Along with the power-law equation of state of 
the type (16), it is possible in principle to have 
even "more stringent" equations, for which the 
pressure becomes infinite at a finite energy 
density, for example 

( 17) 

Realization of this equation by means of a model 
is, however, not an easy problem. 

6. The possibility of violation of the mcc could 
greatly affect in principle many properties of ob­
jects with cosmic scale (bodies of large mass, the 
world as a whole) under conditions when these ob­
jects are in a superdense state. This pertains 
primarily to the problem of gravitational collapse 
(contraction of an object to a point). 

We choose a co-moving reference frame, in 
which the metric of the centrally-symmetrical 
mass distribution has the form 

ds2 = eG d,;2~- el'- (d92 + sin2 9 d<p2)- e"' dR2• 

Accordingly the volume can be written in the form 

V = ~ exp (A) sin 9 d9 d<p dR, ( 18) 

where A = fJ, + u:/2. The limits of integration in 
( 18) are fixed by the definition of the quantities 
R, e, and cp. 

A formal manifestation of a collapse is the 
vanishing of exp ( A), and, as a consequence, the 
vanishing of the volume V. It is important that the 
argument of the exponent is uniquely determined 
in terms of the pressure and energy density [11]: 

A=-~P~e· 
Collapse occurs when this integral diverges at 
the upper limit (as £- 00 ) which certainly can 
occur (and in many cases should occur) for the 
causal equations of state (5) and (6). 

Only for non-causal equations of state, such 
that the integral 

00 

\ de 
~P+e<oo, 
s 

( 19) 

does collapse become impossible. This is the 
situation, in particular, with the equations of 
state (16) and (17). The evolution of a large mass 
or of a world as a whole will never lead to the 
contraction of these objects to a point. 

Let us consider in greater detail the last case, 
starting from the known cosmological equations 
of an isotropic and homogeneous world: 

xea2 = a2 + s, 

dsj(P + e) = -3 daja, 

(20) 
(21) 

where K = k/24rr, s = -1, +1, 0 respectively for 
the closed, open, and flat models, and a ( T)­
"radius of curvature" of the world. 

It follows from (20) that 
s, 
\ de a 
~ P + e = 3 In a; , (22) 

where a 0 is the minimum value of a. 
We consider first the case when £ 0 (energy 

density corresponding to a 0 ) is infinite. Then the 
results obtained above are immediately confirmed: 
the condition for finite a 0 is convergence of the 
integral ( 19). 

For the equation of state (6) P = £/3 we have 7l 

sa4 = canst, a = canst ·I,; 1'1,. 

For the limiting causal equation (5) P = £ we ob­
tain (see [9]) 

sa6 = canst, a = canst· IT 1'1•. 

Finally, for the non-causal equation (16) P ~ £ 2 

we have 

e ln afa0 =canst, a- a0 ==canst · ,;'!,, 

where a 0 is essentially different from zero, for 
otherwise equation (22) would be violated. 

The equation of state (17) corresponds obvi­
ously to £ 0 < 00 • From (20) we then obtain 

a- ao = (xeoa~- s) IT I· 
Considering for the foregoing cases the re­

duced rate of change of a, that is, the quantity 
Ta/a, we can readily see that it runs through the 
values 1/ 2 , %. T 213 , and T respectively. Thus, 
the "more rigid" the equation of state of the 

7J As can be seen from the corresponding solutions (see 
[ 11]), the relation between a and r contains two signs. There­
fore in the regions r > 0 and r < 0 it is necessary to choose 
those signs which lead to real and positive a. 
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matter, the more slowly occurs the evolution in 
the vicinity of the point of minimum T = 0. 

The question arises of the existence of such 
an equation of state as would yield a = 0 for 
T = 0, that is, a simple minimum of the function 
a ( T). It is easy to see that this is impossible. In 
fact, according to (20), the cases s = 0 and -1 
immediately drops out because £ > 0. In the case 
of s = 1 Eq. (20) causes £a2 to increase with in­
creasing a. At the same time Eq. (21) yields 

a (ea 2)joa =-a (3P +e)< 0. 

Summarizing it can be stated that a sufficiently 
strong violation of the mcc leads to an utter im­
possibility of a gravitational collapse. Accord­
ingly, the minimum radius of the object is finite, 
this being due to the large contribution of the ef­
fective repulsion forces, which ensure the 
"rigidity" of the equation of state and which can 
counter the gravitational compression8). As ap­
plied to cosmology, this corresponds to pulsating 
solutions with nonvanishing minimum world 
curvature radius. 

It must be emphasized that the foregoing deri­
vation pertains equally well to arbitrary (particu­
lar or general) solutions of the equations of 
gravitation and to arbitrary geometrical or 
physical collapse source (see [t2J on this topic). 

In conclusion we note that, in our opinion, it is 
difficult to assume complete exclusion of the 
possible verification of the violation of the mcc 
under cosmic conditions. 
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8lNo choice of the equation of state can, however, ensure 
static stability of a massive object; this follows from the 
known considerations connected with the gravitational radius. 
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Note added in proof (January 13, 1964). The results of 
Sec. 6 may have a direct bearing on the presently urgent 
problems of "superstars" and "hidden" masses. Namely, 
among the latter are included bodies in a superdense state 
with a mass exceeding solar mass, so that their radius turns 
out to be smaller than the gravitational radius. The question 
of the elimination of the gravitational collapse is discussed 
also from the point of view of Hoyle in a recent preprint of 
Hoyle, Fowler, and Burbidge "On Relativistic Astrophysics," 
1963. 
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