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Averaged equations for the electromagnetic field in a two-level active medium are deduced 
without expanding into eigenfunctions of the unperturbed system. Solutions are derived for 
stationary nonlinear oscillations in a plane layer. The frequency spectrum of such oscilla
tions is found and the corresponding spatial distributions of the field amplitude and phase are 
determined. 

INTRODUCTION 

THE study of processes occurring in optical 
quantum generators (lasers) requires the solu
tion of a system of nonlinear equations consisting 
of Maxwell's equations for the electromagnetic 
fields and the equations for the density matrix of 
the active medium. The difficulties in solving 
such a system have been overcome so far only for 
a certain class of problems involving primarily 
two-level systems. What has been accomplished 
is essentially the determination of the conditions 
for self-excitation of laser oscillation (the insta
bility condition); moreover, these conditions may 
be found in the linear approximation [ 1•2 J. The 
same is true of the nonlinear problem where it is 
usually assumed that the spatial structure of the 
field is given and determined by the eigenfunctions 
of the unperturbed system (in the absence of the 
active medium)[ 1•3J. As a result one obtains 
equations describing the oscillations of the non
linear system with a finite number of degrees of 
freedom (usually one degree of freedom-the 
"single mode" approximation). Because of their 
smallness, the corrections to the field configura
tion due to the presence of the nonlinear active 
medium may be found by a perturbation method[4J. 

Although these idealizations allow one to answer 
certain important questions, their applicability to 
real systems is in general quite limited. Actually, 
since the laser is essentially a distributed system 
(whose dimensions are large compared to the 
wavelength of light), even a small nonlinearity 
may cause significant changes in the spatial dis
tribution of the field, which should not be taken as 
known. Except for the case of running waves in an 
unbounded medium [ 5], and the case already men
tioned of small perturbations of the field amplitude 

caused by the nonlinearities[ 5J, the correct solu
tions of these nonlinear problems have not been 
obtained. There are a number of papers ( cf. for 
example, [S,7] ), dealing with a determination of 
the dependence of the field energy on the coordi
nates for stationary (monochromatic) oscillations 
in a plane active layer. However, in place of Max
well's equations for the field these papers make 
use of a phenomenological equation for the aver
age values of the flux and the radiation energy 
density [a nonlinear modification of the linear 
absorption law ( Bouger's law)]. As will be shown 
below, these equations lead to incorrect results. 

The present paper will treat several problems 
in laser theory involving the effect of the nonlinear 
medium on the structure of the field. It will be 
shown that the initial equations can (under very 
general assumptions which nearly coincide with 
the conditions for the applicability of these equa
tions) be transformed to a system of lower order 
for quantities which vary slowly in time. As an 
example of the use of this system we will investi
gate the steady state processes in a plane slab 
with end walls of arbitrary reflectivity, which will 
be taken as a one-dimensional model of a laser. 
The solutions obtained defirie a finite number of 
possible nonlinear oscillations (modes), whose 
frequencies differ from the eigenfrequencies of 
the unperturbed system and whose amplitudes and 
phases depend on the coordinates 1>. 

1l'fhese stationary vibrations are analogous in the well 
known way to limit cycles (positions of equilibrium in the 
"slow" variable space) of fixed parameter systems and, 
under well known conditions, may be unstable[•]. Since super
positions of modes are not solutions, the question of the 
possibility of other stationary processes, for example, vi
brations with periodically varying amplitude, remains open. 
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1. CONDENSED LASER EQUATIONS 

We consider the interaction of the electromag
netic field with a system of molecules having two 
energy levels 2>. In this case the initial equations 
are written as follows 

, e a2H 4rre a2M _ 
rot rotH 1 C2 at2 + C2 ---at2 - 0, 

div (H + 4nM) = 0, 

M = Sp (~ P) = !ln Pn + 1l22 P22 + 1l12 P21 + 1l21 Pt2• 

an 1 2i H 
at + r;_ (n- no) = h {(H!l21) P12- ( llt2) P21)}, 

ap12 . 1 i H (H ) } 
7ft- zwo P12 + r; P12 = h {( •llt2) n + ,!J.n-ll-22 P12 , 

(1)* 

where H is the magnetic field, M is the magnetic 
moment of the molecules per unit volume, E is the 
dielectric susceptibility of the medium ~ is the 
magnetic dipole moment matrix of the molecule 
(JJ. 12 = JJ.~ 1 ), p is the density matrix (p 12 = P;t), 
n = P22 - Ptt is the difference between the energy 
level populations, n0 is a parameter depending on 
the temperature and the "illumination," tiw0 is the 
energy difference between the upper and lower 
levels, and T 1 and T2 are relaxation times. As 
usual we assume that the molecules are uniformly 
distributed and uniformly oriented in space 3>. We 
treat the case of a magnetic dipole interaction be
tween molecules and the field; analogous equations 
hold for the case of an electric dipole interaction. 

For all practically interesting cases the follow
ing condition is valid, 

(2) 

i.e., the nonlinear terms and the relaxation terms 
are small. Hence to a first approximation the non
linear interaction of the field with the medium is 
significant only for processes whose frequency is 
close to w0, i.e., 

P12 = CJ (r, t) eiw,t, H = h (r, t) eiw,t: + ii' (r, t) e-iw,t, 

n = n (r, t), 

where u, n and h are functions which are slowly 
varying in comparison with eiwot. 

Putting these expressions in (1) and using the 
proper method of averaging[a], we obtain a system 
of "condensed" equations for the quantities u, n 
and h in the nonlinear active medium: 

2lFor a treatment of the usual two-level idealization 
cf.[']. 

*rot= curl. 
3lJ:n the opposite case one must average the system (1) 

over the distribution function of the active molecules. 

~ EW~ ~ 2iWoE ail 4ltEW~ 
rot roth-- h + --- = -- au.21 c2 c2 at c2 I"" ' 

div (ii + 4na!l21) = 0, 
an 1 ( 2i • ~ 7ft+ 1\ n- n0) =- T a (!J.12 h) + K. c., 

acr 1 i ~ 
-+-a= -(!J.12 h)n. at T2 1i 

(3) 

To second order in infinitesimal quantities, this 
system (3) is equivalent to the initial system for 
arbitrary initial and boundary conditions; moreover 
the present system is considerably simpler (i.e., 
it is of lower order) 4> • In particular it is impor
tant that terms depending on JJ.u and JJ. 22 have com
pletely dropped out of the system (3). This result 
means that in interacting with an electromagnetic 
field of frequency close to w0 the molecule behaves 
like an object exhibiting axial symmetry (symmetry 
axis parallel to JJ.t2). It is easily seen that for the 
component of the field h perpendicular to JJ. 12 , 

Eqs. (3) are linear (although they depend on the 
component 11 11 parallel to JJ.t2 ). On the other hand 
_the nonlinear equations for 'h 11 do not depend on 
h1 . For the corresponding boundary conditions 
_this~allows one to treat the waves with 1i = h. 11 and 
h = h1 independently. 

Using (3) it is not difficult, for example, to ob
tain the well known results of the single mode ap
proximation, which are usually obtained by expand
ing the field in (1) in terms of the eigenfunctions of 
the unperturbed resonator[t,3] • To do this it is 
necessary to fix the spatial structure of the field, 
i.e., to put h = h 1 ( r) q ( t) where h 1 ( r) is a known 
function. 

2. THE SOLUTION FOR STEADY-STATE 
OSCILLATIONS 

Using the equations derived, we now consider 
the stationary states of the laser, for which the 
amplitudes of the oscillations do not depend on 
time. Using the fact that the frequency of the 
process w need not coincide with w0, we insert 
in (3) 

h =h (r)eit>wt, a= a (r) eit>wt, n = n (r), (4) 

where .6.w = w - w0 is a constant frequency offset. 
Then after some simple transformations we obtain 
the equations for the amplitude of the magnetic 
field: 

4>N'ote that for a solid T 2 is much less than any other re
laxation time in the system (T2 < 10-11 sec). In a number of 
problems this allows one to neglect the derivative au! at in 
the third equation of (3) even in the nonstationary case; this 
again lowers the order of the system. 
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rot roth - k2h = [ iak2 :: ( : h )1/ [ 1 + ~2 1 ( ~ h) n . 
Here 

(5) 

k2 = ew• ot = 4nTzno I 1112 (1 - iTzflw) 

c• ' li (1 + T~ (L'lw)2 ] 

~ 2 4TtT21 !112 

= n• [1 + T~ (L'lw)•] 

where here and elsewhere we write J.l. in place of 

J.l.t2. 
We will now consider the one dimensional prob

lem. For simplicity we will consider J.l. to be 
real 5>. Let the magnetic field be parallel to J.l.· 
We choose the coordinate system so that the 
y-a.xis coincides with the direction J.l.. Further
more let h ~ hy0 depend only on the coordinate x. 
Then from (5) we obtain 

As can easily be shown from (8), the phases 
cp 1,2 are simply related to m 1,2 by 

( 10) 

Putting Im a/Re a = - T2D.w, we obtain from (10) 

CJ>1.2 = -} T2 ~oo ln m,,2 + D 1, 2 , ( 11) 

where D 1,2 are arbitrary constants. 
We treat the amplitude variation first. With 

the following change of variables 

(6) Eqs. (9) are transformed to the system 

where we use ;JC to indicate the dimensionless 
function J3h. Since according to (3) the right hand 
side of (6) is small (for a solid, one in fact has 
a :S 10-4 ) we can average over x. 

We will seek a solution of the form 

;;e = cl (x) e-ikx + c2 (x) eikx, 

where c 1 and c2 are slowly varying complex func
tions giving the amplitude and phase of the waves 
running in the positive and negative directions re
spectively. Then to first approximation in the 
small parameter we find the following equations 

dc1,2 = ± ak 
--riX 2 

X < . c1 ,2 + c2.1 exp (± 2ikx) ) 

"'\ 1 + I Ct/2 + I c2l2 + c1 c; exp (- 2ikx) + c;c2 exp (2ikx) • 
(7) 

Here the double angle brackets designate averaging 
with respect to x over the period 2n/k. Finally 
we obtain 6 > 

dc1,2 a,k 
~=±4c1,2 

X (1 + 2 (I Ctl2 +I czl2) +(I Ctl2 - I czl2) 2]'1• ± I cz/2 +I Ct/2 -1 

I c1 , 2 12 [1 + 2 (J Ct/2 + \ c2\2) + (I Ctl2 -I czJ 2) 2]';, 
(8) 

We put c 1,2 in the form I c 1,2 I ei1Pt,2; then the 
equations for the moduli (I c1,2 l2 = m 1,2) separate: 

5>Note that if ll is complex the waves under consideration 
are elliptically polarized. 

6)Qf course the oscillating terms in the right hand side of 
(7), proportional to exp(±2ikx), make a significant contribu
tion to the result of the averaging. 

u' = _ kv Rea, v' = _ ku Rea, ( 13) 
v+1 ' v+1 ' 

where the integrals are easily put in the form 

vz-uz=4A, 

u + ln I u + V u 2 + 4A I = - kx Rea+ B (14) 

(A, B are arbitrary constants). 
Transforming back to the variables n1,2 we 

obtain 

(m1 -A) (m2 -A) =A, 
A lnA 

m1,2 - A ----_-A--.-- + ln (m1. 2 - A) - - 2 - = ± kx Re a, 
mi.z 

(15) 

where m 1 2 > A. The origin is taken at the point 
( B + ln 2 ~ ln fA )/kRe a, around which the whole 
pattern is symmetric. At this point m 1 = m2 =A 
+ fA, and the sum m 1 + m2, proportional to the 
average (over the period 2rr/k) of the energy 
density of the field, is a minimum. 

The constant A is determined from the boun
dary conditions (the quantity B effects only the 
origin of x). Let the region - L 1 < x < L2 define 
an active layer in the oscillating regime, i.e., out
side this layer there are outgoing waves only. 
Then m 1/m2 = r 1 for x = - L 1 and mdm 1 = r 2 
for x = ~ where r 1,2 are the power reflectivities 
of the boundaries of the slab. Putting these rela
tions in (15) it is not difficult to express A in 
terms of r 1, r 2 and the thickness of the layer 
L = L1 + L2. 

Equations (15) define positive m 1,2 only for 
A > 0. From this it is not difficult to show that 
stationary oscillations are possible under the 
condition 
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Since for L _.. Lcr we have m 1,2 _.. 0, expression 
(16) of course coincides with the condition for 
self-excited oscillations obtained in the linear 
theory[ 1,2]. 

The spatial variation of the phase of the wave 
depends, according to (11), on m 1 2. If the medium 

' inside the layer is lossless then the boundary con-
ditions for cp 1,2 have the form 

(cpl- cp2- 2 kx)x=-L, L, = 1tpt,2• ( 17) 

where p1,2 = 0, ± 2, ± 4, ... if the dielectric con
stant of the external medium Eo > E, and P1,2 = ± 1, 
± 3, ... if Eo < E. Using (16) it is easy to deter
mine the frequency deviation ~w in (11) which 
corresponds to a given p. Finally we find for the 
oscillation frequency Wp = w0 + ~w 

P = Pt-P2o ( 18) 

and then the solution is completely defined by (15) 
and (11). 

3. DISCUSSION OF RESULTS 

The averaged equations allow one to find the 
spectrum of the steady state nonlinear oscillations 
(laser modes). Superpositions of these modes are, 
of course, not solutions. It is clear from (18) that 
the presence of the active medium leads to a con
densation of the mode spectrum, leaving the modes 
equidistant. The values of wp do not depend on n0 

or T 1 n. If the quantity 2k0L is a multiple of rr 
then one of the frequencies wp (corresponding to 
2k0L = rrp) is equal to w0• It must be kept in mind 
that the number of stationary modes in the layer is 
finite. In fact, with increasing ~w the quantity 
Re a decreases, until finally (16) can not be 
satisfied. 

According to (15) the difference between the 
amplitudes m 1,2 for the various modes is deter
mined primarily by the quantity T2~w which 
occurs in Re a and {3 2. The number of modes 
having significant amplitude depends on 
o = T2 (~w )min• where (~w )min is the frequency 
interval between neighboring modes. If 2k0L 
+ T2~w ln [ ( r 1r2 )-1/2] » w0T2 then o « 1 and 
there is a large number of possible stationary 

"nNote that the frequencies (18) do not coincide with the 
frequencies for self-excitation of the corresponding laser 
modes (except for the "threshold" mode for which L = Lcr 
and m 1 , 2 = 0). 

states with similar distributions m ( x). If on the 
other hand 2koL + T2~w ln [ ( r1r2 )-1/2] « woT2, 
then o » 1 and the amplitudes of all modes except 
the fundamental are small; the frequency of the 
primary mode is equal to or close to w0. For a 
solid w0T2 ~ 104 - 105, 2k0L ~ 105, i.e., the num
ber of possible modes having appreciable ampli
tude is not very large ( 1-10). 

For each mode, m 1 increases and m2 decreases 
with increasing x. We note that the minimum 
averaged energy density, which is proportional to 
w = m 1 + m 2, occurs close to the less transparent 
boundary; the largest value of w occurs at the 
more transparent boundary B) 

In Fig. 1 we show the dependence of the dimen
sionless variables m 1 and w on the dimensionless 
coordinate x' = kx Re a. The left-hand boundary 
of the layer is assumed to be ideally reflecting 
(and the minimum of w lies at this boundary); 
that is, r 1 = 1. A is a parameter determined by 
the quantity r 2 = r and the dimensionless thick
ness of the layer L' = kL Rea. For fixed A the 
curves constructed are the same for all modes. 
However in a given layer the amplitudes of the 
modes are not all the same since they have differ
ent L' values (hence different A values). 

The efficiency of the laser is characterized by 

m,,w 
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FIG. 1. The dependence of m1 (solid lines) and w (dotted 
lines) on x' = kxRea for 1- A= 0.1; 2- A= 0.5; and 3- A 
= 1. For L' = 1 the curves 1 - 3 correspond to values of r of 
0.4, 0.62, and 0. 77 respectively. 

FIG. 2. The dependence of the dimensionless output 
energy flux density E = m, (1 - r) on r for 1 - L' = 0.5, 
2- L' = 1, and 3- L' = 1.5. 

8)Jf r1 , r2 -> 1, then, as expected, the energy of the field in 
the slab grows without limit. It is simple to show that for 
(1- r1, 2 ) kLRe a « 1, the functions m1,.(x) differ very little 
from constants. The solutions in this case agree with the 
results of Kuznetsova and Rautian[•] obtained by a perturba
tion method. 
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the output power. For a layer with r 1 = 1 the 
flux density from the righthand boundary is 
proportional to E = m 1 ( 1 - r). In this case 
eliminating A for x = L2 from (15), we get the 
relation between r and E: 

r = E + 1- exp [- 2 (L'- E)] (19) 
E-1 + exp [2 (L' -E)) 

It follows that the function E ( r) increases mono
tonically from zero at r = rcr [corresponding to 
(16)] up to the value L' for r = 1. The function 
( 19) is shown in Fig. 2 for various L'. 

As has already been pointed out there are a 
number of papers dealing with the question of the 
stationary states of a plane active layer ( cf. [ 6 ,7]) 
which, in place of Maxwell's equations for the field, 
use phenomenological equations for the time and 
spatial averages of the flux and the radiation 
energy density (the question of the spectrum of 
the oscillations and their phases was in general 
not treated). Corresponding expressions may be 
obtained formally from (7) if, in carrying out the 
averaging in these equations one omits the oscil
lating terms proportional to exp ( ± 2ikx) (see 
footnote 5). It is easy to see that in the nonlinear 
case these solutions are valid only for running 
waves in an unbounded medium when one of the 
quantities c 1,2 is equal to zero. 

The authors are grateful to A. V. Gaponov, 
V. I. Talanov and Ya. I. Khanin for interest in the 
present work and for discussions of the results. 
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