## EFFECT OF UNIFORM COMPRESSION ON THE MAGNETIZATION OF Ho AND Er IN THE ANTIFERROMAGNETIC REGION

## L. I. VINOKUROVA and E. I. KONDORSKIĬ

Submitted to JETP editor January 8, 1964

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1149-1150 (March, 1964)

**M** EASUREMENTS of the relative change of the specific magnetization on compression (the pressure coefficient  $\alpha = \sigma^{-1}(\Delta\sigma/\Delta p)$ ) were made on polycrystalline samples of holmium and erbium in magnetic fields up to 17 kOe. The measurement procedure and the method of producing the pressures were described earlier. <sup>[1]</sup> The values of the adiabatic compressibility at room temperature <sup>[2]</sup> were used to calculate  $\alpha$ . According to the neutron-diffraction data <sup>[3]</sup> and magnetic measurements, <sup>[4]</sup> Ho is antiferromagnetic in the temperature region from 20° to 133°K, and ferromagnetic below 20°K. The antiferromagnetic structure of Ho is a complex spiral structure with the spiral axis directed along the c axis.

The dependence of  $\alpha$  on the field at temperatures of 77° and 111.1°K is shown in Fig. 1. At 77°K, in fields up to  $\approx$ 7 kOe, the pressure coefficient is constant within the experimental error and independent of the field. In this region,  $\alpha = -(84.4 \pm 5.6) \times 10^{-7} \text{ atm}^{-1}$  at p = 2600 atm, and  $\alpha = -(83.8 \pm 5.6) \times 10^{-7} \text{ atm}^{-1}$  at p = 1800 atm. The sharp enhancement of the effect in stronger fields is obviously due to the partial



FIG. 1. Holmium. Dependence a(H) at 77°K: o – at p = 2600 atm, • – at p = 1800 atm; at 111.1°K: o – at p = 3700 atm, • – at p = 1880 atm.



FIG. 2. Erbium. Dependence  $\alpha(H)$  at 77°K: o – at p = 2800 atm, • – at p = 1820 atm.

destruction of the spiral spin structure and the appearance of ferromagnetic ordering. At 111.1°K, the effect is smaller; the pressure coefficient is constant also in the antiferromagnetic region (up to  $H \approx 12$  KOe) and equal to  $\alpha = -(44.3 \pm 2.9) \times 10^{-7}$  atm<sup>-1</sup> at p = 1880 atm, and  $\alpha = -(45.4 \pm 3.0) \times 10^{-7}$  atm<sup>-1</sup> at p = 3700 atm.

Erbium is antiferromagnetic in the temperature range from 20° to 80°K.<sup>[5]</sup> The structure of Er in the 52-80°K region is also a complex spiral structure:<sup>[6]</sup> the z component of the moment varies sinusoidally with distance along the c axis with a period equal to 3.5 c<sub>0</sub>. Measurements of  $\alpha$  were carried out at 77°K (near the Néel point) using annealed samples of Er. Figure 2 illustrates the dependence  $\alpha$  (H). The pressure coefficient at both pressures is constant within the experimental error:  $\alpha = -(114.8 \pm 7.7)$  $\times 10^{-7}$  atm<sup>-1</sup> at p = 2800 atm, and  $\alpha = -(115.8 \pm 7.8) \times 10^{-7}$  atm<sup>-1</sup> at p = 1820 atm.

From the results of these measurements it follows that at the cited temperatures the magnetization of both Ho and Er decreases under uniform compression, and the ratio  $\Delta\sigma/\sigma$  is independent of H in the antiferromagnetic region but proportional to pressure within the investigated limits.

<sup>1</sup> L. I. Vinokurova and E. I. Kondorskiĭ, Paper presented at the Symposium on Ferromagnetism and Ferroelectricity, Leningrad, May, 1963.

<sup>2</sup> Smith, Carlson, and Spedding, J. Metals 9, 1212 (1957); C. R. Simmons, Paper presented at the ASM-AES Symposium, Chicago, November 1959.

<sup>3</sup>W. C. Koehler, J. Appl. Phys. Suppl. **32**, No. 3, 20S (1961).

<sup>4</sup>Rhodes, Legvold, and Spedding, Phys. Rev. 109, 1547 (1958).

<sup>5</sup>Elliott, Legvold, and Spedding, Phys. Rev. 100, 1595 (1955).

<sup>6</sup> Cable, Wollan, Koehler, and Wilkinson, J. Appl. Phys. Suppl. **32**, No. 3, 49S (1961).

Translated by A. Tybulewicz 161