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The hypothesis concerning the existence of moving poles in the complex plane of the angular 
momentum is used to investigate the spin structure of the amplitude of the production of vec­
tor mesons in the reaction 1r + N- N + w0(p) at high energies. The differential cross sec­
tion of the reaction, the polarization of the produced vector mesons, and the angular distri­
bution of the products of the decay w0 - n° + y are calculated under the assumption that one 
pole makes the dominating contribution. The question of the production of vector mesons at 
zero angle is considered separately. 

1. As already noted earlier [iJ, an analysis of the 
spin structure of the amplitudes of inelastic proc­
esses whose asymptotic behavior is determined by 
the contribution of the non-vacuum Regge poles 
leads to qualitatively different results for the po­
larization effects, depending on which Regge pole 
makes the main contribution to the amplitude at 
high energies s 112• 

In connection with the numerous recent experi­
mental investigations of resonances, and in con­
nection with the discovery of vector ( w0 or p) 

mesons, it is of interest to consider reactions of 
the type 

from the point of view of the hypothesis of moving 
poles in the complex plane of the angular momen­
tum j. Contributions to the amplitudes of proc­
esses (1) are made by several poles with different 
quantum numbers. Assuming that at high energies 
the decisive contribution is from some single pole, 
we can calculate the polarization states of the gen­
erated vector mesons. An experimental study of 
the angular distribution of the secondary particles 
following the decay of the vector mesons makes 
it possible to establish the order of arrangement 
of the trajectories of the different poles relative 
to the vacuum pole. 

In the present paper we investigate the spin 
structure of the amplitude for the production of 
the w0 meson in reaction (1). We study the polar­
ization of w0 under different assumptions concern­
ing the mutual locations of the Regge poles corre­
sponding to various quantum numbers in the t­
channel of reaction (1). We calculate the angular 
distribution of the products of the decay w0 - n° 
+ y. In addition, we consider separately the pro-

duction of w0 at zero angle, which has unique 
properties. 

All the results obtained are also applicable 
without noticeable modifications to the production 
of p mesons in analogous reactions. However, the 
applicability of the Regge-Gribov method to proc­
esses involving the production of the p meson can 
raise doubts, owing to the large width of the p­

meson resonance. 
2. On the basis of relativistic invariance, we 

can write the amplitude of the process (1) in terms 
of six independent invariant amplitudes in the 
form l) 

(2) 

Here Ai -functions of the kinematic invariants 
s = ( p1 + Pn )2 and t = (p1 -p2 )2; Pi> p2 -4-momenta 
of the nucleons, Pn -4-momentum of the pion, 
k -4-momentum of the vector meson; the 4-vector 
of the vector-meson polarization ea satisfies the 
condition ( ek) = 0; N a = iE ajJyoPljJPzyk0, where 
E ajJyo -fully anti symmetrical tensor of fourth 
rank; the spinors are assumed normalized by the 
condition uu = E/ I E 1. 

For the transition into the t -channel ( N + N 
- 1r + w0 ) it is sufficient to make in (2) the sub­
stitutions p2 - - p2 and Pn - - Pn· 

In accordance with the well known ''reggeiza­
tion" rules [2], it is necessary to have the expan­
sion of Ai in the c.m.s. of the t-channel. Such an 
expansion can be readily obtained using either the 
helicity amplitude formalism [3] or the technique 

l)We use a metric in which the scalar product of the 4-
vectors is ab = a 0b0 - a· b. 
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of expansion in spherical vectors, used in partic­
ular by Berestetskii [4]. The invariant amplitudes 
Ai turn out to be expressed as a result of such an 
expansion in terms of the amplitudes fi, which in 
turn are simple combinations of the helicity am­
plitudes. 

We present the final results: 

Ar = 2~~k {lr- (zt + :: )12 + i~~ 15 

+ imw (zt + Ek ) (zt 14- {a)\ , 
kp pw 1- Zt J 

A2 = - ~ {15 + (zt + Ek) (zt 14 - Ia)}. , 
2Epk2 pw 1 - Zt 2 

a=-.- fr- Zt-- /2+-- /s A mw { { Ek ) imw 
2E2k \ f!W kp 

_;__ imw (zt _ Ek ) (Zt 14- /a) } , 
' kp pw 1- Zt 2 

(3) 

Here E and p -energy and momentum of the nu­
cleons in the t-channel c.m.s., k -energy and 
momentum of the w0 meson, Zt -cosine of the 
angle between the momenta of the nucleon and 
the w0 meson in the t-channel c.m.s. 

z1 = Jli [s- m.2 - f-1 2 + (t + f-1 2 - m~2) / 2] 

x {(t- 4m. 2) [t- (m~ + f-1) 2 ] [t- (m"- f.1) 2 Jr'!,, 
m -nucleon mass, m7T -pion mass, and p. -w0-

meson mass. 
The expansion of fi in partial amplitudes is of 

the form 

11 = ~ (2j + 1) P; (zt) Iori (t), 
i 

"' . , lo2i(t) 12 = LJ (2! + 1) Pi (zt) V. . • 
i J(J+1) 

"" (2j + 1) . P, ))' I .( )P"( )l Ia = LJ j (j + 1) [/231 (t)(zt i (zt + 321 t ; Zt , 
1 

~ ;.~j-!- ~.~ [/32i (t) (z1 P/(zt))' + l23.i (t) P{ (zt)f, 
} 

lo = "'(2j + 1)P·' (z) 13ri(t) f } 1 VjU+1)' 

- "'(2. + 1) P·' (z) lr3i (t) . 
Is - T 1 1 t Vj(j + 1) 

(4) 

Here Pj(Zt) -Legendre polynomial, and the primes 
denote differentiation with r_espect to Zt· 

The partial amplitudes fJ. (t) [the index u= 0, 1, 
Ut\ _ 

2, 3 corresponds to different spin states of the NN 
pair; the index II.= 1, 2, 3, corresponds to the pro­
duction of an w0 meson with longitudinal polariza­
tion (II. = 1 ) or with transverse polarization of 
either the electric (fl.= 2) or the magnetic type 
(II.= 3)] correspond to NN annihilation in 7T and 
w0 with a fixed total angular momentum j and a 
specified quantum number; parity P, signature 
Pj = ( -l)i, isospin T, and G-parity. 

Which of the transitions describes precisely 
each of the partial amplitudes f~il. (t) can be read­
ily determined if one knows that in the final ( 7T 
+ w0 ) state there are fixed T = + 1 and G = + 1. 
Since for the nucleon -antinucleon pair G 
= ( -1 )T+l+S, where S is the total spin and l = j 
in the singlet NN state ( u = 0) and in one of the 
transverse triplet states ( u = 3 ) , and l = j ± 1 
for the longitudinal and the other of the transverse 
triplet states ( u = 1, 2) [4], we obtain the following 
types of transitions: 

1) The amplitudes f~ 1 (t) and f~2 (t) correspond 
to the transition with P = + 1, Pj = -1, and T = G 
= + 1 ( a pole ) . . . 

2) The amplitudes f! 2(t) and f~ 1 (t) correspond 
to a transition with P = -1, Pj = +1, T = G = +1 
((3 pole). . . 

3) The amplitudes f~3 (t) and f{3 (t) correspond 
to a transition with P = -1, Pj = -1, and T = G 
= +1 (y pole). 

As can be seen from (3), the amplitudes Ai 
have kinematic singularities at zt = ± 1. However, 
there are no singularities of Ai as t -- 0 (if we 
disregard the singularities at t = 0, correspond­
ing to photon exchange ) . 

The point t = 0 is not a physical point for re­
action (1) and, generally speaking, is not singled 
out in any way. There are therefore no grounds 
for assuming that some of the fi vanish too rapidly 
as t -- 0. In addition, we assume that as t -- 0 
there are no special relations between the ampli­
tudes fi. Then the condition for the absence of 
singularities of Ai as t -- 0 leads to the following 
behavior of fi as t -- 0: 

h ""t, !2"" 1/t, /3 ,.._, l/t, /4 "" const, j5 ;::::: t, Is "" const. (5) 

To find the asymptotic behavior of fi at large 
zt (which corresponds to s- oo in the s-channel 
and to finite negative t) we consider the symmet­
rical and antisymmetrical parts of fi ( s, t) sepa­
rately. Using the Watson-Sommerfeld transfor­
mation, we can find the contribution due to the 
pole with the largest Re j to the amplitudes fi, 
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and then with the aid of (3) the contributions to Ai· 
Going to the limit I zt I » 1 ( s - oo ) and continu­
ing A ( s, t) analytically in the scattering channel, 
we can obtain the asymptotic behavior of the am­
plitudes of reaction (1). 

3. For further calculations of the polarization 
effects upon production of the w0 meson we shall 
find useful the explicit form of the density matrix 
of the particle with spin 1. As is well known [ 5], 

in three -dimensional notation the density matrix 
takes the form 

1 r· + 3 1,; t , 3 Qik 1 P:>.:>.' = 3 °H' 2 ).)i <,i T 4 Cik ).),' • (6) 

Here ~i -particle polarization vector in the rest 
system and Cik -quadrupolization tensor, which 
characterizes the so-called alignment. The in­
dices i\., i\.' = 1, 2, 3 correspond to three possible 
polarization states of the vector particle; Pi\.i\.' 
has eight independent components. 

We choose the matrices of the w0-particle spin 
operator in the form 

T; n· = -ie;n'. (7) 

In this case the mean values of the spin operator 
correspond to linear polarization of the w0 along 
the axes of the Cartesian system of coordinates 
with z axis directed along the w 0 meson momen­
tum in a system where the latter is in motion. 

Then 

Qn·ik=(Ti Tk)A~.·+(Tk Ti)n·---} O;k 0:>.:>.' 

( ga{3 -metric tensor in the Feynman metric 

goo= -gu = -g22 = -gsa= 1). 

Here ay -particle polarization 4 -vector and 
Da{3 characterizes the alignment. In the particle 
rest system a 0 = 0 and a = ~. The vector ay 
should have three independent components, which 
is ensured by the condition ( ka ) = 0. The tensor 
Daf3 is chosen to make Daa = 0, kaDaf3 = k(3Daf3 
= 0 and Da{3 = D{3a• and has, as required, five in­
dependent components. In the rest system Da{3 

-cik· 
Using the laws for relativistic transformation, 

we can easily relate the three -dimensional and 
four-dimensional polarization parameters. We 
assume here that the momentum of the vector 
particle is directed along the z axis. We then 
have 

Dab~'cab (a,b=1,2), (a=1,2), 

(t) 

Daa = Daa = - Caa 
ft 

. kw 
(a= 1, 2), D03 = D30 = - 2 c33 • (11) 

ft 

As follows from (10), the quantities ay and Daf3 
themselves can be calculated by the formula 

i 
ay =- - ea.wrsksff'o.fl• 

ft 

D 2 (I£"- k(l ) Gll a, o.{l = -3 7- go.{3 - (,:ro.{3 + •Tf3a)• (12) 

= + o;k on·-( 6;~, ok:>.·+O;:>.· ok~.). (7') The amplitude for the production of a vector 

It is easily seen from (6), (7), and (7') tha~ 

P1.1. = 1, 

C;; = 0, (8) 

In order to find the polarization parameters ~i and 
cik• it is sufficient to use the formulas 

(Qil<) = C;k = Sp Qikp. (9) 

In analogy with (6), we write down the relativis­
tic vector particle density matrix in the form (our 
approach is similar to the Michel method [s]). 

S"a~ = ! { ( k~~~ - ga~)- :ft ieo.~yo ay ks- ~ Do.~}, 

(10) 

particle in a state with definite polarization can 
be written in the form 

AA c= liJ .. e/·, (13) 

where e~ satisfies the summation condition 

~ea.:>. ell I.~ k,. kfl / !12- ga(l· (14) 
), 

Then the density matrix :3" a{3 is 

a. " A ),' ·Tafl = L.J Pn· e,. C(l , (15) 
H' 

where the value of Pi\.i\.' normalized to the differ­
ential cross section and averaged over the spins 
of the remaining particles is 

(16) 

Substituting (16) in (15) and using (14) we get 

(17) 
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Knowing the form of the amplitude for the pro­
duction of the vector particle, we can calculate fP 
from (17) and then the polarization parameters ay 
and Da(3 with the aid of (12). 

4. We now consider the contributions of the in­
dividual poles to the w0-meson production ampli­
tudes and the associated polarization effect. (To 
prevent confusion, all the kinematic variables in 
the c.m.s. of the s-and t-channels will henceforth 
be designated by the indices s and t, respectively.) 

A. The a pole is contained in f! 1 ( t) and f!2 ( t ) . 
According to (4) and (3), it makes a contribution 
to f1 and f2, and consequently to A1 and A3• In 
this case the w 0 production amplitude, correspond­
ing to the contribution of the a pole only, is 

Ma = u~ y5u1 [A1 (ple)-Aa (p2e)], 

(18) 

The differential cross section, determined by the 
formula 

is then equal to (for s- oo and t = const) 

dcra = - 4wt2 {I h 12 - ~ zt2! /212 } 
dQ f.l2S Wt 2 

= Cf'rr. (t) 8zRe a (t) -1. (19) 

Using (17) and (12), we can readily verify that the 
polarization of the w 0 vanishes asymptotically as 
s - oo for any initial nucleon polarization. 

To calculate the w 0 alignment parameters we 
write out the non-vanishing components of the den­
sity matrix fP, which are obtained from (17) (we 
retain here, naturally, terms that are principal in 
s as s- oo ): 

0 __ ks2 Wt2 I /1 - f.l2Wt-2 Zt /2l2 
:1aa- 7 k? 1/![2- u2 Wt 2z~lf212 ' 

f1 2 1/I-zt/212 
Ef'll =- kt2 I h 12- !-l2 Wt 2 Zt2! /212' EP22 = 0, 

:'Pal = fP1a 

(20) 

These expressions can be simplified somewhat 
by recognizing that we operate in the region of 
small momentum transfers I t I « JJ.2 and that we 
know here the behavior of fi as t - 0 [formulas 

(5)]. Let us write out the result directly for the 
three-dimensional density matrix in the w 0 rest 
system, for this is precisely the matrix needed 
for the calculation of the w 0 decays (we note that 
the indices 1, 2, and 3 of the three -dimensional 
density matrix correspond to the numbers of the 
rectangular axes of the coordinate systems ) : 

lh 1
2 

Pzz = [ h 12 - f-t2Wt 2 Zt2 I /z J2 ' 

f.l2 Zt21/212 
Pu =- Wt2 I h 12- ~L2Wt 2 z/ i /z [2 ' Pvv = 0, 

if.l Zt Re /1 /2• (21) 
Pxz = Pzx = w;- 1 h 12 _ f.l2 001 2 z? I /z 12 · 

Unfortunately, nothing can be said concerning 
the relation between the amplitudes f1 and f2 at 
large s and at small finite t. However, in order 
to have manageable results that can be more read­
ily visualized, we assume that some limitations on 
the quantities f1 and f2 are satisfied (actually 
these are limitations on the residues at the poles 
of the amplitudes f1 and f2 ). 

We have three possible limiting cases: 

1) l/1l~l : 1 zt/2l. 

Pzz = 1' Pxx = Pvv = Pxz = Pzx = 0; (22a) 

2) 1/II~JL Zt/2[, P= =1, Pzz=Pyy=Pxz=Pzx=O; 
Wt 

3) l/1! 2 ~- ::2Zt21/zl2 , 

1 
P==Pzz= 2' Pvv=O, 

1 
Pxz = Pzx = y· 

(22b) 

(22c) 

By expressing Da(3 in terms of fP (12) we can 
now readily obtain the w 0 alignment parameters 
in the rest system. We must take into account 
here three cases of connections between f1 and 
f2• Thus, c33 = -% and c 11 = c 22 = % in the first 
case, c 11 = -% and c33 = c 22 = % in the second, 
and c 11 = c33 = - t;3 and c 22 = % in the third. 
. B. The f3. pole is contained in the amplitudes 

f~ 2 (t) and f~ 1 (t ), and consequently, in accordance 
with (4), in f3, f4, and f5• Taking (3) into account, 
as well as the fact that the contribution to the cross 
section from the coefficients of k in the total am­
plitude (2) is of one degree higher in s than that 
from the remaining coefficients, we find that when 
I zt I » 1 the contribution to the total amplitude in 
the case of the (3 pole is made by A2 and A4• 

Here J;J0 = u2y5ku1 !A2 (ple)- A4 (p2e)J, 

imw1 [ ( Etkt ) zt/4 ] ( A4 =- -2E k 2 /o + Zt - -- 1 2 • 23) 
t t Pt Pt Wt - Zt 
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As in the case of the a pole, the polarization of 
w0 vanishes as s __.. oo. 

The density matrix :!!' in the case of the {3 pole 
has the following nonvanishing components: 

ks2 rot2 I lo- 112 i:Ut-2 /41 2 

ff'aa= 7 kt2 l/ol 2-l12 rot 2 1/412 ' 

:!!' 112 i/o-/412 a, 0 
u=-~l/ol2-112rot21/412' .:r22= ' 

Using the behavior of f 1 as t __.. 0, we can read­
ily see that the components of the three-dimen­
sional density matrix in the w0 rest system can be 
written in the form 

Pzz = 0 (t), 'PYY = 0, P= = 1 + 0 (t), 

Pzx = Pxz = 0 CVt). (25) 

In this case c 11 = -,-% and c 22 = c33 = %. 
C. The y pole is contained in f~ 3 ( t) and f{s ( t). 

Reasoning similar to that in Sec. (B) show that 
when the main contribution is made by the y pole 
the w0 production amplitudes can be written in 
the form 

My=-~ (A5 + A6k) ul"(Ne), 

A. = im 2 [ts + Em Zt2 2 h] ' 
2Et Pt let ( t 1 - Zt 

A - - im __!!h_ (26) 
6 - 2Et2 Pt kt2 1 - Zt2 

In the case of the y pole the polarization of w0 is 
rigorously equal to zero for all s. 

In this case the components of the density ma­
trix are exceedingly simple. Only the yy compo­
nent of the three-dimensional density matrix dif­
fers from zero, or 

pyy = 1, Pab = 0; a, b =I= y. (27) 

This result is clear even from the structure of 
the expression (26) for MY' which contains only 
the y component of the polarization vector ea. 
The alignment parameters are in this case equal 
to 

We note that this result for the y pole does not 
depend on any assumptions made in connection 
with relations (5). 

5. The foregoing results, which are based on 
the one-pole model, may not be valid in the re­
gion where there is no asymptotic expression I zt I 
» 1. However, we can analyze the situation near 
thepoint ltl=!-tminl=m2 (p.2 -m~)2/s 2 , which 

corresponds to the production of an w0 meson 
emitted at an angle es = 0 relative to the initial 
direction of the pion momentum ( zs = 1 ) . Here 
zt == - 1 and there is no asymptotic expression. 
Naturally, in the case of production forward, the 
amplitude of the process (1) should simplify, since 
there is only one preferred direction, namely the 
direction of the pion momentum. It is particularly 
easy to write down the amplitude of the process (1) 

in three-dimensional notation: 

(28) 

It is obvious that at zs == 1 we can not form other 
pseudoscalar combinations from the vectors avail­
able at our disposal, except those indicated in (28). 

Thus, the amplitude (2) depends on only two rather 
than six independent invariant functions, when zs 
= 1. The same deduction can be made by analyzing 
the helicity amplitudes of reaction (1) and by rec­
ognizing that helicity must be conserved when zs 
=1. 

In place of (28) we shall write the amplitudes 
for production forward in invariant form, choos­
ing the scalar combinations of the 4 -vector of the 
problems which do not vanish when zs == 1: 

(29) 

where q = p 1 -p2• Since zt == -1 when zs = 1, we 
obtain the connection between the functions A and 
B and the functions fi: 

im 
A= -p;Ua+/4), 

2m [ ro 1 im J B = -t- k; h + p; (/a+ /4) . (30) 

A similar result is obtained directly from (2) 
and (3). 

It is seen from (30) that the amplitude f1 and 
the combination ( f3 + f4 ) remain when zs = 1 ( zt 
= '- 1 ). The subsequent calculations will include, 
in view of relations (5), the quantity 

1 + ~tPt /I z 1 + o (t). 
lmk1 fa+ / 4 

If we confine ourselves to terms with the lowest 
powers of It !min• then the relation between A 
and B becomes perfectly defined, making it pos­
sible to obtain concrete information on the polari­
zation state of the w0 meson produced at an angle 
es = 0. For this case we write out directly the 
three-dimensional density matrix in the w0-meson 
rest system: 

Pab = + (t'\ab- na nb)· (31) 

Here na is a unit vector in the direction of the w0 
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motion. From (31) and (12) we obtain the alignment 
parameters of w0 produced forward: 

The result (31) does not correspond to any of 
the results of the single -pole treatment; this is not 
surprising, in view of the absence of a Regge asym­
ptotic expression when zs = 1. 

We note that in the derivation of (31) we used 
only the symmetry properties of the amplitude M 
at zs = 1 and the analytic properties of fi as 
.t- 0 (5). In this sense, the result (31) is exact 
and is not based on any model representation. 

6. We have not yet exhausted all the possibili­
ties that result from relations (5). Thus, from 
the fact that f3 ~ ft as t- 0 and from the ex­
pansion (4) it follows that the positions of the (3 
and y poles are interrelated at t = 0, when (3 

= y ± 1. An analogous result for the same system 
of poles was obtained by Volkov and Gribov C7J, 
who analyzed the NN amplitude at t = 0. In addi­
tion, Gribov and Volkov obtained the relation a 
= y, which does not apply in our case because of 
the vanishing of the resi<_iues in the a poles of 
the amplitudes fb1 and fb2 at t = 0. 

If we assume that the connection between the 
positions of the poles remains the same for finite 
t, i.e., 

ta'/a(O), W/~(0), 

tv'/v(0)~1 for ltlmin~lti~J.t2, 

then: (a) in the case when a = y = (3 + 1 it is nee­
essary to neglect the (3 poles in the amplitude (2) 
and to retain the a and y poles; (b) in the case 
when a = y = (3 - 1 the principal role is assumed 
in (2) by the (3 pole. In case (b) it is obvious that 
at I zt I » 1 the result (31) cannot be obtained, 
since p22 = 0 [see (24)], whereas when zs = 1 we 
have p22 = Y2 [see (31)]. Thus, the results at zero 
angle ( zs = 1) do not go over continuously into 
the single -pole result at zs = 1 + 2t/ s. 

In case (a) the contribution to the amplitude (2) 
is made by the functions f1, f2, f3, and f6, whereas 
when zs = 1 the principal role is played [withal­
lowance for (5)] by the function f4• Thus, in the 
case (a) it is impossible to satisfy relation (31) in 
simple fashion in the region It I min « It I « J.l. 2, 

where I Zt I » 1 and asymptotic formulas are 
available for the Legendre polynomials. In addi­
tion, inasmuch as in the case (a) the amplitude (2) 
depends on four functions fi, the expression for 
the density matrix of the wO meson turns out to 
be rather complicated, so that it is impossible to 
obtain simple numerical values for the polariza­
tion parameter, as in the case of the single -pole 

treatment. We note only that the relation between 
the residues in the a and y poles can in this case 
lead to a picture which coincides with the single­
pole a or y picture, if some of the residues turn 
out to be numerically small. 

7. Let us consider in conclusion the conse­
quences of the expressions obtained in Sees. 4 and 
5 for the density matrix of the w0 produced in re­
action (1). By way of an example we calculate the 
angular distribution of the y quanta from the re­
cently observed decay [B] 

(32) 

in a system where the w0 is at rest, relative to the 
plane of the reaction (1). The matrix element of 
the reaction (32) is of the form [9] 

(33) 

where €(3 -photon polarization 4-vector, ky­
photon 4-momentum, and p 0 -7T0 meson 4-momen­
tum. In the w0 rest system we can represent (33) 
in the form 

(33') 

The probability of the decay (32) is 

(34) 

where na is a unit vector in the direction of the 
photon emission relative to the plane of the reac­
tion (1), and Pab is the w0 density matrix. 

1. In the case when the a pole predominates, 
the angular distribution of the y quanta has, ac­
cording to (22), the following possible types: 

1) dW ~ sin2 8dQ, 
2) dW ~ (1- sin2 e cos2 cp)dQ, 
3) dW ~ [1- 1/2(cos 8 +sin 8 cos cp)2]dQ. (35) 

Here () -angle between the direction of emis­
sion of the y quantum and the direction of mom en­
tum of w0 in the c.m.s. of reaction (1), and cp­
azimuthal angle of the y-quantum momentum rel­
ative to the plane of reaction (1). Since our analy­
sis was limited to high energies and low momen­
tum transfers, the direction of motion of the w0 

meson coincides approximately with the direction 
of the momentum of the incoming pion. 

2. In the case when the (3 pole predominates, 
we have according to (25) 

dW ~ (1- sin2 8 cos2 cp)dQ, (36) 

which coincides with expression 2) of (35). 
3. In the case when the y pole predominates, 

we have in accordance with (27) 

an·/- (1-sin2 8sin2 cp)dQ. (37) 

4. In the case zs = 1, i.e., when w0 is emitted 
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precisely in the direction of motion of the primary 
pion, we have in accord with (31) 

(38) 

It follows from (35)-(38) that for an experimen­
tal determination of the importance of any particu­
lar Regge pole it is necessary to know the direction 
of emission of the recoil nucleon, in order to fix 
the plane of the reaction (1) and to observe the azi­
muthal asymmetry of the decay (32). 

In the opposite case, the distributions [(35), 2)] 
and (36)-(38), integrated over the azimuth, have 
the same form: dW ~ 'l'2 ( 1 + cos 2 e )d cos e, and 
it is impossible to separate the variants 1-4. 
Nonetheless, even in this case the variants 1) and 
3) of (35) differ from the remaining possible situ­
ation. 

Modern experimental data [8] obtained for 1r-­

meson energies lower than 2.8 BeV, do not make 
it possible for the time being to choose between 
the situations which we have analyzed, inasmuch 
as the total kinematic picture of the reaction (1) 

with subsequent decay (32) was not measured, as 
would be necessary to study the azimuthal asym­
metry of the decay (32). In addition, the energy 
2.8 BeVis apparently still insufficient to study the 
asymptotic behavior of the process (1), inasmuch 
as the threshold of the reaction (1) is situated at 
a primary pion energy E ~ 1.1 BeV. 

However, the available experimental data [8] 

indicate the presence of alignment in the produced 
w0 mesons, making it possible to hope to obtain 
in the future more complete experimental infor-

mation on the process (1) which, in principle, may 
prove useful for the determination of the limits of 
applicability of the Regge -Gribov single -pole treat­
ment. 

The authors are grateful to V. D. Mur, I. Ya. 
Pomeranchuk, and K. A. Ter-Martirosyan for 
useful discussions. 
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