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The properties of the ground state of a Fermi system are discussed. The ground state 
energy of a Fermi gas of rigid spheres of low density is computed accurate to ( pFa )3, 

where PF is the Fermi momentum and a the diameter of the sphere. 

IN this paper, we consider correlations in the 
ground states of Fermi systems with pair interac­
tion. A method is used which allows us to take 
successively into account the correlations of 
higher and higher orders (two-particle, three­
particle, etc.), and which involves the writing 
down of a chain of equations for the n-particle 
correlators, which is equivalent to the exact 
Schrodinger equation. The ground-state energy is 
expressed only in terms of a pair correlator. 

The method is applied to a Fermi gas of rigid 
spheres, which is a convenient model of systems 
with strong repulsive interaction. At low density 
(which is characterized by a low value of the 
parameter y = PFa, where PF is the Fermi mo­
mentum and a is the diameter of the sphere) this 
problem has been investigated by many authors. [t] 
The ground state energy per particle, with accu­
racy to y2, was first determined by Lee and 
Yang. [1J The contribution to the energy, which is 
proportional to y, is determined by two-particle 
correlations in the s-state; the presence of Fermi 
filling affects the s-scattering and leads to a con­
tribution which is proportional to y2• In the calcu­
lation of the succeeding terms of the expansion, 
it is necessary to take into account correlations of 
higher order than the two-particle correlations. 
A comparative estimate of their contributions is 
of interest. 

The ground state energy per particle is com­
puted here accurate to y 3• The contribution pro­
portional to y 3 is equal to 

be= p 2Fy3 [(v -1) 

x(1 I 15n + 0,064 + o.012 + (v- 3)0.059) 
+ ( v + 1) I 5n], ( 1) 

where v is the number of spin and isospin de­
grees of freedom (more exact figures are given 
below). The first two terms are determined as 
before by pair correlations in the s-state and by 

the effect of Fermi filling on them. The last term 
is determined by pair correlations in the p-state. 
The effect of other correlated pairs on a given 
pair leads to the third term in ( 1). Finally, the 
term with the factor 0.059 is due to triple corre­
lations. 

For v = 4 (a system with neutron-proton de­
grees of freedom), Eq. (1) is identical with the 
unpublished results of Martin (see [2] ). 

The determination of the correlators is given 
in Sec. 1. Their equations are discussed in Sec. 
2, while rigid spheres are considered in Sects. 3 
and 4. Details of the derivation of the equations 
are given in the Appendix. A system of units is 
employed in which n = 2m = 1 ( m = fermion 
mass). 

1. CORRELATION FUNCTIONS 

Let us expand the wave function of the ground 
state of a system of fermions 'It ( 1, ... , N) in 
some, for the time being arbitrary, complete set 
of (basis) functions of the independent motion of 
the particles: 

(2) 
n=l 

Here w0 is the function with minimum energy 
(normalized to unity) in the set: 

N 

'fo = (N!f'1• A IT qJp(p) (3) 
P=l 

(A is the coordinate anti symmetrization operator: 
( <Pp I <Pp') = Opp'). All the functions of the set can 
be generated by a transfer of a certain number of 
particles from the states <Pp to the states <Pm 
which are not occupied in w0• 

The function 'ltn in (2) represents that part of 
>It which is expanded in functions of the set with n 
transferred particles. The 'ltn obey the conditions 
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(n =I= n'), (4a) 
(4b) 

which follow from the method of their construction 
and from the orthogonality of the functions of the 
complete set. It follows from (4b) that l}l is 
normalized by the condition 

(4c) 

Let us consider the structure of l}ln. We begin 
with l}l 1• It is expanded in a sum of functions of 

l}lt1 (p1 = 1, ... , N), corresponding to the possi­
bility of transfer from each state <Pp 1• It is easy 
to see that l}llt is obtained from 13) by replacing 
<Pp1 with a function orthogonal to any of the func-

tions <Pp· We call it 1/Jp and introduce the trans­
fer operator M 1, such that 1/Jp = M1<Pp1• Then 

'I'\Pt = (N!(1• A [II l:pp (p) Mlcpp, (PI) J. (5) 
P*Pt 

The function l}l 1 is completely determined by 
the N functions M1cpp 1 or by the matrix elements 
M 1, with 

(cpp, I M] I l:pp,) = 0 (pl, P2 = 1, ... , N). (6) 

Similarly, l}ln is determined by the operator 
Fn ( F 1 = M1 ), which transfers n particles from 
the states <Pp to the states <Pm. It is convenient 
to separate from it the parts corresponding to all 
possible independent transfers of n particles. 
For example, for n = 2, 

'Yl'P' = (N!(1' A [ II «:pp (p) F2cpp, (PI) «:pp, CP2l], (7a) 
p,.p,, p, 

F 2cpp, (1) cpp, (2) = (MlMI2 + M2) «:pp, (1) «:pp, (2) (7b) 

(here and below, the superscript on the operator 
denotes the variables on which it acts). 

The operator Mn satisfies by definition ortho­
gonality conditions of the type (6) with n p-func­
tions on the right and at least one p-function on 
the left. As will be seen below, Mn ( n ~ 2) de­
scribes the correlation between the n particles 
(more exactly, the quasi-particles). Therefore, 
we call Mn the n-correlator, and the result of its 
action on <Pp the n-correlation function. 

2. EQUATION FOR CORRELATION FUNCTIONS. 
GROUND STATE ENERGY 

We get the equations for Mn by the variational 
method, varying the mean value of the Hamiltonian 
for each l}l~. The value of o ( l}ln) is determined 
as the part of ol}l which is expanded in the func­
tions of the set with n transferred particles: 
o ( l}ln) = ( o IJ1 )n- In other words, the variation of 
l}ln reduces to the variation of F n. Account of the 

orthogonality conditions of the type (6) for Fn is 
taken, as usual, by the method of undetermined 
Lagrangian multipliers. 

The equations for Mn are obtained in the 
Appendix. Here, we carry out the selection of the 
basis by means of the equation with n = 1. For 
this purpose, we note that the intuitive represen­
tation of the presence of independent motions in 
the system corresponds to isolation from l}l in 
(2) of l}l 0-the wave function of several quasi­
particles. The field in which they move is natur­
ally determined from the condition M 1 = 0. 

Substituting M 1 = 0 in Eq. (A.5) in the Appendix 
for n = 1, we find the equation for the basis func­
tions: 

TIP>+~' <PI[ T p,[ AM2PPI> +~'<PI I vI A (1 + M2) PPI) 
J1a Pt 

+ ~' <PIP21 Vp,p,[ (A' M2 +AM a) PP1P2> = Ep I p) (8) 
P1<P2 

(the prime on the summation sign indicates that 
the values of p 1 and p2 equal to p are omitted). 
The other notation is defined in the Appendix. For 
M 1 = 0, we have F 2 = M2 and F 3 = M3. 

Multiplying (8) on the left by ( p I and using 
the orthogonality conditions for M2 and M3, we 
get the energy of the quasiparticle in the state <Pp: 

Ep =<PIT I p) + ~' <PPII vI A (1 + M2) PPI>· 19) 
p 

We find the total energy by multiplying the Schro­
dinger equation for the system on the left by 
(l}l 0 I, using the condition (4) and the orthonormal­
ity of the functions <Pp: 

E = ('P' o I T I '¥ o) + ('Yo I V I 'Yo + 'Y 2) = ~ (Pl I T I PI) 
Pt 

+ ~ <PIP21V I A (1 + M2) PIP2>· (10) 
P1<P2 

We henceforth consider only a homogeneous 
set of Fermi particles. Before we specify the 
interaction, let us discuss the equation for the 
pair correlation function as applied to this case. 
Using the explicit form of the quasi-particle func-

tions [<Pp(r, u) = n 112 eip·rx(u)] and Eqs. (9) 
and (10), we get from Eq. (A.5) of the Appendix, 
for n = 2, 

(TI + T2- Ep- Ep') I AM2pp') +vI A (1 + M2) pp') 

+~<PI I V1p, + V2p,l (A'M2 +AM a) pp'pi) 
Pt 

+ ~ (PIP21Vp,p,I(A'Ma+A"M2M2+AM4)pp'p!p2) 
P1<P1 

+ ~ I AM2PIP2> <PlP21 vI A (1 + M2) pp') 
Pt<Po 

(11) 
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The double prime on the operator A means that 
only those permutations are admitted in which the 
matrix element containing this symbol does not 
break up into a product of two factors. For ex­
ample, the term M212 M2 34 I pp'p1p2) is absent, 
since in this case the matrix element is equal to 

I M2PP') < P1P2 I v I M2P1P2 ). 
The first two terms in (11) correspond to the 

scattering of the quasiparticles by one another; 
the third and fourth terms describe the effect of 
three and four particle correlations on the pair 
correlations, the fifth term-the mutual effect of 
pair correlations and, finally, the last term, the 
effect of the quasiparticle filled Fermi sphere 
(the Pauli principle). 

It is easy to eliminate the Lagrangian multi­
pliers in (11). We operate on the left of (11) with 
the operator ( 1 - P 1 )( 1 - P2 ), where Pi is the 
projection operator in the Fermi sphere in the 
variable i. Taking into account the equality 

(1- P1)(1- Pz)l2~) = 0, (1- P1) (1- Pz)Mn12···= Mn12 ... 

(1-P;)T; = T;(i-P;), 

we get 

(Tt + T2- Ep- Ep') I AM2pp') 

+ (1- P,) (1- P2) vI A (1 + 1VI2) pp') 

+ ~ (Ptl (1 - P1) Vtp, 
p, 

+ (1- P2) V2p, I (A' M2 + AM3 ) pp'p1 ) 

+ ~ (P1P2I Vp,p, I (A'Jla + A"M2M2 + AM4 ) pp'p1 p2) 
Pt<P2 

+ ~ I AM2P1P2) <P1P2I VI A (1 + M2) pp') = 0. (12) 
Pr<.P2 

The relations ( 12) and ( 10) are basic for the 
following sections. 

3. A GAS OF RIGID SPHERES. PAIR 
CORRELATIONS 

Equation ( 12), taken separately, does not de­
termine the pair correlator, since it contains 
correlators of higher orders. However, some­
times their role is unimportant, and the corre­
sponding terms in (12) can be treated as a pertur­
bation. Such is the situation in the case of a 
rarefied Fermi gas with strong repulsive interac­
tion. We shall consider this case in Sees. 3 and 4. 

We denote the repulsion radius by a. Then the 
degree of rarefaction is characterized by the 
nondimensional parameter PFa = y. It is clear 
that only pair correlations are significant at low 
density ( y- 0 ). The contribution to the energy 
under these conditions is principally determined 
by correlations in states with small orbital mo­
menta, inasmuch as it is determined, in accord 

with Eq. (10), by a quantity of the type of the 
scattering amplitude. 

The three-particle correlator, considered as 
a perturbation, should generally be found first 
from the equation for M3• We shall show in Sec. 
4 that, in first approximation, the correction in 
(12) due to the three-particle correlations can be 
expressed in terms of the pair correlation func­
tion and the two-particle amplitude of s-scattering. 

We shall work with the interaction 

{
oo, r<a 

V (r) = 0 > , r a, 

which does not depend on the spin variables. It 
follows from (12) that, for this interaction 
M2 I pp') = - I pp') when r ::s a; the product 
V ( 1 + M2) I pp' ) = 0 everywhere except for r = a. 

Starting out from the presented physical con­
siderations we begin the determination of M2 by 
analyzing Eq. (12) for the s-wave. This equation 
is obtained in the following way. Denoting by g 
the total momentum, u the relative momentum of 
the pair' I M2 I pp') = n -i e iq. R M2 (g) I u) ( R 
is the coordinate of the center of mass) and 
separating the spin variables, we get from (12) 

(T- u2 )M2 (g) In) = 

- 1/2(1- 8g) VI (1 + M2(g) )u) - 1/2/(g) ju), 

1-Sg = (1-Pg;z)(1-P-g;2}. (13) 

Here I (g) I u) is the part of (12) which is not ex­
plicitly written out in (13); Pg;2 is the projection 
operator in the momentum sphere of radius pF 
with center g/2. Equation ( 13) is written for the 
coordinate wave function of different quasiparti­
cles (i.e., those which have different spin direc­
tions). For identical quasiparticles, it is neces­
sary to antisymmetrize the function. By writing 
down Eq. (13) in integral form and expanding all 
functions in partial waves: 

(r[M2(g)lu) =2J Rr~(r)Yzm(nr), 
lm 

lm 

(k I ~ vI (1 + M2 (g)) u) = 2J cr~ gz (ka) Yzm (nk), 
lm 

gz (kr)= 4ni1iz (kr), (14) 

we find the desired equation 

Rg u ( ) 1 gu (" 1 - flg (k) (k ) (k d 
oo r = - (2n)a 4n Coo ~ k2- u2 go r go a) k 

- 'V4it lgu (r) - W (r), (15) 

-gu 1 \' 1 - flg (k) 
I (r) = Sn (2n)3 .l k2 _ u2 go(kr) ( k I I (g) In) dk. (16) 



G R 0 UN D S TAT E 0 F A R A R E F I E D F E R M I GAS 0 F R I G I D S PH E R E S 391 

W ( r) describes the contribution of the other 
partial waves which arise from the non-symmetry 
of 8g(k). 

We note that one can express the ground-state 
energy per particle by cf~. In accord with (10) 

and (14), 

E 3 1 
8 = N = 5 P} + (2:n:) 3 4:n:p~ 

B ( u)- ~ [.!__ + _g_ + _u_ ln PF + g/2- u 
1 g, - n 2 4pp 2pp PF + g(2 + u 

PF ( 1 g2 U2 ) 1 (PF + g/2)2- u2 J + 2g - 4pp2 - PF2 n PF2- g2j4- u2 . 

The contribution of u2/2pp2 in (20) is due to the 
"vacuum" pair correlations. The function B1 

arises from the integral with eg (k) and de­
scribes the effect of the Pauli principle on the 
pair correlations. 

X ~dpdp'2J cr.!: gz(ua)Yim(nu)[v-(-1)1]. (17) Substituting (20) in 117), we get the correction 
lm 

Now, by means of (15), we shall successively 
determine the terms of the expansion of cgu ( y) 

in powers of y. Equation (17) then gives the con­
tribution to the energy from correlations in the 
s-state, also in the form of a power series in y. 
In the present work, we limit ourselves to terms 
of the expansion up to y 3• 

Using the boundary condition Rf0u (a) = 
-g0 (ua)Y00* (nu), for r =a, we get from (15) 

gu • v-- I Coo= [go(ua)Yoo (nu)- 4:n:fgu(a)-W(a)J/4:rt(2:rt) 3 

~ 1- 8g (k) 2 k 
X J2 2 ,go ( a)dk. 

c -u 
(18) 

It is clear beforehand that c 00 ~ a as y ~ 0. 
Actually, in this limit, Eq. (13) describes the pair 
scattering in vacuum. Since, as is well known, the 
scattering amplitude of the Z-th partial wave is 
tz ~ a (ua )2Z ( ua- 0 ), and, in accord with (14), 
tz ~ cz (ua)Z, we have 

Clm ,...., a(ua)l ,...., av1• (19) 

In the numerator of (18), the first term is of 
the order of unity, the second, as shall be shown 
in Sec. 4, is of the order of y 2, and the third of 
the order of y5• In fact, owing to the parity of 
8g ( k ), only l of the same parity are coupled. 
Consequently, the first term in W (a) in (18) cor­
responds to the d-wave and is equal to ( 6 - + 0) 

C2m \ 1 - Bg (k) • 
(2:n:)s j k2 _ u2 go (ka) g2 (ka) Yoo (nk) Y 2m (nk) dk 

c2m 1 Sg (k) • 
=- (2:n:)3 j k2 _ u2 _if:! go (ka) g2 (ka) Y 0o (nk) 

X Y 2m(nk) dk~(ay2)(ppy2)=T5 • 

Therefore, the first two terms of the expansion of 
c 00 are determined by the denominator of (18). In 
order to obtain E accurate to y 3, it is necessary 
to keep terms up to i in (18): 

~~ = V 4n a [1 + yB1 + y2 (B12 + u2j2pp2) _Jgu (a)]. (20) 

The quantity B1 ( g, u) is determined by the ex­
pression 

to the energy due to the s-wave: 

6e(s) = (Z:rt)~ PF' y(v -1) ~ dp dp' 

x [t+rB1+r2 (B12+ 3;;2 )-lgu(a)} (21) 

Upon integration, the first two terms lead to a 
well-known result:[1J 

( 2 12 ' 
6e1(s) + 6e2(s) = PF2 r (v- 1) 3n + r 105:n:2 (11 - 2ln 2)) . 

Integration of the term with y 2 u2 gives 

(22) 

The integral of B12 can not be expressed 
analytically. Numerical integration leads to the 
result 

(±0.0005). (23) 

The contribution from j%U (a) will be computed 
in the next section. 

Let us now consider the contribution of the 
p-wave in (17). It is necessary here to retain in 
c 1m terms up to y. According to (19), the expan­
sion of c 1m begins with terms of the order of y. 
Therefore, account of any contributions to the 
vacuum scattering in the p-state is superfluous 
in this approximation. Directing the z axis along 
u, we get, as in (18), 

c1,-1 = 0, c1,1 = 0; 

cgu ) y • ( ) 1 I g12 (ka) dk 
10 = g1 (ua 10 Dz / 4:n: (2:n:)3 j k2 _ u2 _ i6 

=-iV12:n: ar ~. 
PF 

We substitute this in (17): 

6e(P) = (2:rt)~ PF4 r(v + 1) ( :n f' i ~ dpdp' cf~ u 
1 

= PF2r3(v + 1) 5:n:. 

(24) 

(25) 

The contribution to the energy from the subse­
quent partial waves is proportional to powers of 
y higher than the third, and we shall not consider 
them. 
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4. CORRECTIONS TO s-SCATTERING 

In the correction I (g) I u ), we first consider 
the mutual effect of pair correlations: 

1 ~ -
!1 (g) I u) = Q .LJ I M 2 (g) u1)(u1l VI (1 + M2 (g)) u) Og (u1), 

u, (26) 

where the summation is carried out over the 
relative momentum of the pairs p1p2 having the 
same total momentum g as the pair pp'. This is 
marked by the_introduction of the corresponding 
step function tlg ( ut). Summation over the spin 
states has already been carried out. Substituting 
in (16) and expanding all quantities in y, we find 
the first term of the expansion of f1gu (a): 

J-gu( )=-(4n)2 2 ~1-0g(k) dk~ Sg(ul) d (27) 
1 a (2 )sa k2 2 k2 ~ ul. n - u - u1 

The corresponding correction OE ~s) is obtained 
from Eq. (21). Calculation gives 

(28) 

The calculation of corrections of the three­
particle correlations is more involved. It is con­
venient to compute it without transforming in the 
equation to relative coordinates for the different 
quasiparticles. After summation over the spin 
states, we have I2 I pp') equal to 

l2l pp') = ~ (Pll V2a (M212 + Mla + Ma) 
p, 

= ~ <P1I l I vpp'P1- PP1P'- P1P'P>· (29) 
p, 

We now show that in first approximation in y, 
(29) is expressed in terms of the two-particle 
scattering amplitude and the pair correlation 
function in the following way: 

12jpp') =~<Pllt2a(M212+Mla) 
p, 

Using (A.5) for n = 3, we write out the equation 
which determines M3 at low density, i.e., leaving 
only the direct interaction of three quasi particles: 

(Ti + Tz + Ta- p2 - p'2 - p"2 ) )Mapp'p") 

= -{1-Pi) (1-Pz) (1-Pa) 

>< [r + (Viz+ Vza + V13)Ma] jpp'p"), 

r = Viz(Mz23 + Mz13) + Via(Mz12 + Mz23) 

+ Vza(Mz12 + Mz13). 

(31a) 

(31b) 

Equation (31) describes the scattering of the 
quasiparticle by the correlated pair. The corre-

lated quasiparticles are located in the mean at a 
distance rav ~ 1/pp from one another, which is 
y- 1 times greater than the scattering amplitude 
t 0 ~ a. Consequently, as y- 0, it should be 
possible to express Eq. (29) in terms of the 
characteristics of two-particle scattering. 

In order to obtain (30), we substitute the 
formal solution of Eq. ( 31): 

Ma = [1- Ga(V,z +Via+ V2a) ]-1Gar, 

G'a = -{1-Pi) (1-Pz) (1-Pa) 

X (Ti + T2 + Ta _ p2- p'2- p"2)-1 

in (29). For symmetry, we supplement the term J 
with the term V12 ( M213 + M223 + M3 ). The matrix 
element (29) of this operator vanishes because of 
the orthogonality condition (p1 I M2 = ( p1 I M3 = 0, 
so that the addition has no effect on the result. 
Then, 
l = {1 + {Viz+ Via+ Vza) 

(32) 

The value of J can be written down in terms of 
the correlators M212 , M213, M223, which satisfy 
by definition the equations 

(33) 

and the corresponding scattering amplitudes tik 
= V ik ( 1 + M2ik) 

[we note that Eq. (33) differs from Eq. (13) as 
y-O 

Mz = GzV(1 + Mz), 

(34) 

Gz =- (1-Pi) (1- Pz) (Ti + Tz- P12 - pz2)-1 (35) 

only in the replacement of G2 by G3]. 
Actually, using (31b), (32)-(34), and the 

equality 

[:l- Ga(Viz +Via+ Vza) ]-1 = 1 + 'fW,p + M213 + M223 

+ 'JW212'JW213 + 'JW212'JW22a + ... , 

on the right side of which are contained all possi­
ble products M2ik with the exception of cases in 
which identical M2ik appear successively in the 
product, we find 

1 = f12(M223 + M213) + f13(M212 + M223) 

(36) 

the terms not written down in (36) contain prod­
ucts of more than two operators. 

It remains to estimate the values of t and M. 
The matrices t 12 and M212 are diagonal in the 
momentum representation over the third variable. 
The diagonal matrix element ( m 3 I M213 I m 3) 
= Mm 312 satisfies an equation that follows from 
(33): 
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Mm•12 = (1- Pt) (1- Pz) [p2 + p'2 + p"2 - ms2 - T1 

- T2}-1V1z(1 + Mm, 12), 

and differs from (35) only by a number in the 
denominator of the Green's function. As a- 0, 
according to (14) and (20), < q1 q2 ltm/2 1 qj q2) 
does not depend on this number, and is equal to 
!J- 1 87Taoq1+q2,qj+q2· The correlators M2 and 

M/k are proportional under these conditions to 
a. Therefore, it suffices to limit ourselves in J 

to the terms written down in ( 36); this leads to 
Eq. (30).0 

Before calculating oE, we separate from (30a) 
the terms with M2 I pp' ). They have the structure 
( u 1 + u2) I M2PP' ), where u is the single-parti­
cle operator. We have 

~[ (Ptl (t2a +tis) M2121 v pp'pi) 
p, 

- <PIIt23Ml3IPPIP1)-(PI~13 M223 IPIP 1 p) l 

= 3
8:n:PF2y(v-1)1M2pp'). (37) 

This part of I2 I pp' ) is compensated by the 
correction I 3 I pp'), which is connected with the 
change in the dispersion law of the quasi-particles. 
Actually, according to (9), (14), and (20), the 
energy of the quasiparticles in the first approxi­
mation in y is equal to 

Ep = p2 + 6Ep = p 2 + 3:PF2Y (v -1), lsi pp') 

=- (6Ep + 6Ep•) IM2 pp'), 

which cancels Eq. (37). 
We now compute oE in the usual way. From 

(16) we find the first term of the expansion of 
f2gu (a): 

/-gu 3 4 2 (4:n:)2 
2 (a)= - (v- ) a (2:n:)6 

~ , 6(m+m'-p-p') 
x dm dm dm1 dp1 2 + ,2 2 ,2 m m -p -p 

[ 6 (m + m1 - p- PI) + 6 (m' + m1 - p' - PI) J 
X m2 + m12- p2- Pt2 m'2 + m12- p'2- Pl2 • 

Substituting this in (21), we obtain 

24 (4:n:) 2 (' 
6e6(•J= (2:n:)9 PF6 y3 (v-1)(v-3).\ dpdm 

( \&(m+m'-p-p')d 'd')2• 
X .l m 2 + m'2 - p2 - p'2 m p 

Calculation of the integral leads to the result 

( 38) 

(39) 

1 ~ntegrals over the momentum which diverge at the upper 
limit can be cut off in the estimate at values of the order of 
1/a. 

(+0.003). (40) 

The origin of the factor ( v - 3) is evident 
from (30a). We write down the wave function on 
the right there in the form 

(v- 2) I pp' PI)+ (App, + Ap•pJ I pp'p1>· 

Antisymmetrization in the two latter compo­
nents corresponds to cases in which the spin state 
of p 1 is the same as for p or p'. After separa­
tion of M2 I pp' ) , the two direct terms in the 
matrix element of 130a), which contains these 
components, correspond to three exchange terms. 
Since all the terms contribute the same amount to 
oE, (30a) is proportional to 2 ( v- 2) + 2 ( 2 - 3) 
=2(v-3). 

It is obvious that the contribution of the four­
particle correlations to the energy begins with 
terms of higher order in y than the three-particle 
correlations, and can be omitted in the given ap­
proximation. This confirms the estimate of the 
corresponding term in Eq. (22). 

Collecting all the o E proportional to y 3, we 
get Eq. (1). 

In conclusion, we emphasize the following 
properties of the method used. 

1. The fundamental objects of investigation, 
the correlation functions, have the intuitive mean­
ing of wave functions of correlated groups. 

2. In the language of field theory, the correla­
tors represent blocks of diagrams. In the pres­
ence of a small parameter (for example, y ), the 
selection of terms in the equations for the corre­
lation functions automatically guarantees the iso­
lation of a sequence of principal diagrams. For 
the problem under consideration, the proposed 
method is, in our opinion, the most natural and 
economical. 

3. The method is equally applicable to finite 
and infinite systems. 

4. Inasmuch as a variational principle is used, 
any physical information on the structure of the 
correlation functions (both in infinite and finite 
systems) can be taken into account in the best 
fashion. 

The authors thank L. A. Sliv, B. L. Birbrair, 
0. V. Konstantinov, S. V. Maleev, V.I. Perel', 
G. M. Shklyareskil, and G. M. Eliashberg for 
discussions. 

APPENDIX 

The matrix elements of normalization Dun' 
= < Wn I Wn') and of the kinetic and potential 
energies Tnn' = < Wn I T I Wn') and Vnn' 
= < 'l'n I V I Wn') enter into the expression for the 
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mean value of the Hamiltonian. By virtue of (4a) 
and (4b), the matrix Dun' is diagonal in nn', Tnn' 
-;r 0 only for n - 1 s n' s n + 1; Vnn' -;r 0 for 
n- 2 s n' s n + 2. 

Before the calculation, we introduce a notation 
that simplifies the writing down of the formulas. 
We denote by I na) the product of n p-functions, 
chosen from the N in any sequence a. The sym­
bol Fz I na ) I l s n ) denotes the effect of Fz on 
all possible l p-functions of the I na). For ex­
ample, 

Then .Yn is written in the form 

We calculate the matrix elements, taking into 
account the condition of orthonormality of the p 
functions and the conditions (4) 

Dnn' = (N!t1 (AFnN I AFnN) = (FnN I AFnN) 

= ~ (Fnn"-1 AFnn"-), 
(7. 

1 n 

~ T n,n+i = ~ (Fnn"-1 ~ T.l (A'Fn-1 + AFn) n"-) 
i=-1 a S=l 

+~ ((Fnn"-)PIITp,l (A'Fn+AFn+I)n"-pl>· 
a 

p,7"("-) 

(A.1) 

(A.2) 

In the second sum of (A.2), after selection of the 
n p-functions by the sequence a, summation is 
carried out in the remaining N - n functions. 
This is denoted by the symbol p 1 -;r I a). The 
operator Tp acts on the variable on which depends 
the function <Pp in the left side of the matrix 
element. As a consequence of the conditions of 
the orthogonality of Fn and the p-functions, some 
permutations drop out; this is denoted in (A.2) by 
the prime on A. For example, in the first term 
of IA.2), the only possible permutations are when 
T s acts on a single, uncorrelated p-function in 
the right side. 

Similar designations are applicable to the 
matrix elements of the potential energy: 

2 n 

-~ Vn,n+i=~ (Fnna(~ Vss'I(A'Fn-2+A'Fn_1+AFn)n"-) 
t=-2 12. s<s' 

n 

+ ~ ((Fnn"-)PII~ V.v.l 
a s=l 

p,7"(!7.) 

a 
p,<p,; p,, p,7"(!7.) 

(A.3) 

The orthogonality conditions on I Fnna) and 
on the functions <Pp are taken into account by 
adding to ( 1J1 I H I.Y) / ( lj! I lj! ) the component 

~ (Fnn"-J n(l) Xn"-nr> , (A.4) 
n,a:,{) 

where "Xn n{3 are Lagrangian multipliers and 
I n13 ) is tfie product of n basis functions, chosen 
in some fashion {3, among which is at least one 
p function. 

By carrying out variations with respect to 
( Fnna I, we get the equation for I Mnna): 

n 

~ r. I (A'Fn-l + AFn) n(J.) 
S=l 

+ ~ <Pll T p, I (A'Fn + AFn+l) n(J.PI> 
p,7"("-) 

n 

+ ~ v •. , I (A'Fn-2 + A'Fn-l + AFn) n(J.) 
s<s' 

n 

+ 2J (P!I ~Vsp,J(A'Fn-l+A'Fn+AFn+I)n"-p1 ) 
p,7"(!7.) B=l 

+ ~ (PIP2J Vp,p,J 
p,<p,; p, p,7"(!7.) 

X (A' F n + A' F n+1 + AF n+2) n"-p1p2 ) 

+ ~ An"-n(ll n(3)- E I AFnn"-) = 0, 
(l 

An"-nfl = In"-n(3('Y J 'f), 

where E is the energy of the system. 

(A.5) 

1K. Huang and C. N. Yang, Phys. Rev. 105, 767 
11957); T. D. Lee and C. N. Yang, Phys. Rev. 105, 
1119 11957), 117, 12 11960); A. A. Abrikosov and 
I. M. Khalatnikov, JETP 33, 1154 (1957), Soviet 
Phys. JETP 6, 888 11958); V. M. Galitskil, JETP 
34, 151 (1958), Soviet Phys. JETP 7, 104 (1958); 
H. Kummel, Z. Physik 166, 243 (1962). 

2 Gomes, Walecka and Weisskopf, Ann of Phys. 
3, 241 (1958). 

Translated by R. T. Beyer 
85 


