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Equations are proposed for the partial waves in the low energy region, which take into ac­
cou?t exactly the requirements of analyticity of the scattering amplitude with respect to two 
vana.bles, and the unitarity conditions in all three channels below the thresholds for in­
elastic processes. 

1. INTRODUCTION 

As is well known, it is possible to obtain an ap­
proximate system of equations for the scattering 
amplitude starting from the Mandelstam repre­
sentation [t] and the unitarity condition in all three 
channels. Such a system of equations was formu­
lated by Ter-Martirosyan.C2J Although recently 
doubts have been expressed as to the validity of 
the Mandelstam representation with a finite num­
ber of subtractions [3, 4], equations of this type 
continue to be of interest in the analysis of low 
energy scattering. The Mandelstam representa­
tion is apparently violated only because of the in­
crease without bound of the number of subtractions 
in the dispersion relations in momentum transfer 
as the energy is increased. The analytic proper­
ties of the amplitude for finite values of these 
variables are, probably, in agreement with the 
Mandelstam representation. As will be shown 
below it is possible in that case, confining one­
self to the low energy region, to construct a sys­
tem of equations for the amplitude similar in 
character to the equations of Ter-Martirosyan. 

Independently of the complications connected 
with the infinite number of subtractions a direct 
solution of the Ter-Martirosyan equations pre­
sents great computational difficulties. Conse­
quently a transition to equations for partial ampli­
tudes is of great value. In such a transition one 
unavoidably loses a certain amount of information. 
In particular, in the methods of Chew and Mandel­
starn [5] and Shirkov et al. [SJ the inelastic jumps 1l 

l)B . 1 . y me ashe we mean the jumps that are due only to 
intermediate states containing more than two particles. 

in the amplitude are completely ignored. For this 
reason the analyticity properties of the amplitude 
originally postulated fail to be reflected in the 
equations for the partial waves. 

In the present work we describe a method for 
obtaining equations for the partial waves in the 
low energy region, in which the analyticity proper­
ties of the amplitude are more fully taken into 
account. In the derivation of the equations the 
spectral functions of the Mandelstam representa­
tion are broken up into parts that are close to and 
far from the physical regions. With the help of 
the proposed method the contribution to the am­
plitude from the near part of the spectral function 
is taken into account fully. At the same time we 
are successful in avoiding the explicit inclusion 
of the spectral functions in the equations. This 
facilitates the writing of the equations in terms of 
partial waves. The most significant step in the 
derivation of the equations is the decomposition of 
the amplitude into separate terms for which dis­
persion relations can be written in a convenient 
form. The resultant equations take into account 
exactly the unitarity conditions in all three 
channels at energies not exceeding the thresholds 
for inelastic processes, and also the requirements 
of crossing symmetry. 

The contribution of the distant part of the spec­
tral function to the amplitude cannot be found 
within the framework of the present method. It is 
supposed that in the low-energy region this con­
tribution may be approximated by a function of 
some small number of arbitrary constants which 
constitute the parameters of the theory. In addi­
tion, in the solutions of the equations there appear 
further arbitrary constants in agreement with the 
results of Castilleja, Dalitz, and Dyson. C7J 
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2. THE SYSTEM OF EQUATIONS FOR THE 
AMPLITUDE 

Let us consider the scattering of identical 
scalar particles of mass m. The generalization 
to more complex situations presents no difficulty 
in principle. Let us assume that transitions of an 
even number of particles into an odd number are 
forbidden (as in the case of rrrr scattering). Let 
us introduce the Mandelstam variables s, u, t, 
equal to the energy squared in the first, second, 
and third channels respectively. Let z 1, z2 , z 3 be 
the cosines of the scattering angles in these 
channels so that 

Zt = 1 + 2t I (s- 4m2), 

and two other equations obtained from the above 
by cyclic permutation of variables. 

(1) 

For simplicity let us suppose to begin with that 
the amplitude A ( s, u, t) satisfies a double dis­
persion relation with no subtractions. We decom­
pose the spectral functions of the Mandelstam 
representation Aik ( x, y) into parts depending on 
their location with respect to the physical regions. 
Taking into account the identity of the particles 
we write these functions in the form 

Ail<(x,y) =p(x,y) +p(y,x)+a(x,y), (2) 

where p ( x, y) is different from zero only for 4m2 

< x s 16m2, y > 16m2, and Uik ( x, y) only for 
x "'= 16m2, y "'= 16m2• By x and y we mean any 
two of the variables s, u, t, and the pair of in­
dices i, k takes on the values 1, 2; 2, 3 and 3, 1. 
The function u ( x, y) satisfies the condition 

a(x, y) = a(y,x). (3) 

The regions in which the functions p ( x, y) are 
nonvanishing are dashed in in Fig. 1. 

FIG. 1 

We represent the scattering amplitude 
A ( s, u, t) in the form 

A(s,u,t) = ~(s,u) +~(s,t) + ~(u,t) + ~(u,s) 
+~(t,s) +~(t,u) +f(s,u,t); 

1 16m' oo ( 1 ') 

~ (x, y) = n2 ~ dx' ~ dy' (x' ~ :)· (:' _ y), 
4m' Y(X') 

00 00 

f(s, u, t) = : 2 ~ dx' ~ dy' a(x', y') 
tam• tsm• 

{ 1 1 
X (x'- s) (y'- u) + (x'- u) (y'- t) 

+ (x'-t)ty'-s)} · 

Here y( x') > 16m2• We want the amplitude 
A ( s, u, t) in all three physical regions for 

(4) 

(5) 

(6) 

s s 16m2, us 16m2, t s 16m2 (see Fig. 1). Our 
aim then is to construct a system of equations 
which takes into account the entire contribution 
to the amplitude from the near parts of the spec­
tral functions p ( x, y) and is at the same time in 
a convenient form for passage to partial waves. 

We write the quantity {3 in the form 

tam• 

f.l ( ) = ...!_ ~ ot (x', y) d '· 1-' X, y 2 , X, 
n 4m' x - y 

(7) 

2 00 ( ') 

ot (x, y) = n ~ py'x, yy dy'. (8) 
Y (x) 

On substitution of Eq. (7) into Eq. (4) we obtain 
the following representation for the amplitude: 

1 16m' d, 
A (s, u, t) = -2 \' -,-8 - [ot(s', u) + ot(s', t)] 

n .l s -s 
4m' 

1 16m' du' 
+ -2 \ -,- [ot(u', t) + cx(u', s)] 

n ~ u -u 
4m' 

1 16m' dt' 
+ 2n ~ t'-t[cx(t',s)+cx(t', u)J+f(s,u,t). (9) 

4m' 

The functions a that appear in this formula are 
simply related to the elastic jumps of the ampli­
tude. In particular the elastic jump in the ampli­
tude in the s channel, A1ez, is equal to 

A 1ez(s, z1) = 1/2(a(s, t(s, Zt)) + a(s, u(s, Zt))]. (10) 

It is not hard to see that for 4m2 s s s 16m2 the 
quantity a ( s, t ( s, z 1 )) has a Legendre polynomial 
expansion in the same region as the function 
A1ez ( s, z 1 ). At the same time Eq. (9) makes it 
possible to express in terms of a the contribution 
to the amplitude of the spectral functions p (x, y). 
It is therefore convenient to choose the quantities 
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a as the unknown functions when constructing the 
equations. In order to obtain a closed system of 
equations it is necessary to write for a a relation 
analogous to the conventional unitarity condition. 
To this end we decompose the amplitude A ( s, u, t) 
into two parts: 

A(s.u.t) = 112[AII(s,u,t) +AIII(s,u,t)]; ( 11) 

AII( t)- 2 r A2(u',z2(u',s))d I 

s, u, - :rt j u' - u u ' (12a) 
4m' 

Aur( t)=__! r A3(t',z3(t',s)) dt' 
s, u, :n: .) t'- t . (12b) 

4m' 

Here A2 ( u, z2 ) and A3 ( t, z 3 ) are the full jumps 
in the amplitude in the u and t channels respectively. 
It is obvious that for s = const 2': 4m2 the function 
AII(s, u, t) has a cut only for u 2': 4m2, and the 
function Alii ( s, u, t) only for t 2': 4m2• In our 
case A2 ( x, z) = A3 ( x, z ) and therefore 

AII(s, t, u) = AIII(s, u, t). 

The singularities of the function Alii ( s, u, t) 
shown in Fig. 2. 

II 

I 
I 

I 
I 

I 

"I 

$ 

FIG. 2 

(13) 

are 

Let us show now that the quantity a ( s, t) is 
related to the function Alii ( s, u, t) by a relation 
analogous to the conventional uni tari ty condition: 

1 [s- 4m2 ]'/• a (s, t (s, z1)) = 4Jt s 

X~ dQ' A1II (s, u', t') A 1II • (s, u", t"), (14) 

where dQ' is a surface element of the unit sphere 
in the space of the momenta of the intermediate 
particles in the c.m.s. The validity of Eq. (14) is 
simplest to establish by making use of the concept 
of complex angular momentum.[B] In order to make 
use of this method we first expand the functions 
a and Alii in Legendre polynomials in the s 
channel by making use of the formulas 

00 

a (s, t (s, Zt)) = ~ (2l + 1) a<1> (s) P1 (z1), 115) 
1=0 

Alii ( ( ) 00 III (I) s, u s, Zt , t (s, z1)) = ~ (2l + 1) A (s) P1 (z1), (16) 
l=o 

where 

1 l 

a(l) (s) = 2 ~ a(s, t (s, zt}) Pl(z1}dz1 , 

-1 

1 

A III (I) ( ) 1 \ Alii ) s = 2 .) (s, u (s, Zt , t (s, Zt)) P1 (z1} dz1• 

-1 

By making use of Eqs. (8) and (12b) the last 
two expressions may be written as 

{17) 

(18) 

2 00 

a<l> (s) = ~ ~ Qz (z1) p (s, t (s, z1)} dz11 (19) 
z,(s) 

where Qz ( z 1 ) are the Legendre functions of the 
second kind, z 0 ( s) > 1, z 0' ( s) > 1. 

Equations (19) and (20) make it possible to 
continue the functions a IZ) ( s) and AIII(Z) ( s) to 
complex l values. Under the assumptions that 
were made about the properties of the amplitude 
these functions are analytic in the l plane to the 
right of the line Re l = 0. As is well known, the 
quantities AIII(Z) ( s) satisfy the unitarity condi­
tion which, in view of the identity of all particles, 
may be written for arbitrary real positive l in 
the form 

Im AIII(l) (s) = w (s) I AIII<l)(s) 12, 

w(s) = [(s- 4m2) I s]'lt. 

For 4m2 ::s s ::s 16m2 

ImAa(t,z2(t,s)) = p(s,t) 

and in accordance with (8), (12b), (17), and (18) 

Im A III(l) (s) = a<l) (s). 

(21) 
(22) 

(23) 

(24) 

Therefore the unitarity condition (21) takes on for 
4m2 ::s s ::s 16m2 the form 

(25) 

This relation is valid, in particular, for all integer 
(even and odd) values of l. Formula (14), therefore, 
follows from it as in the case of the conventional 
uni tari ty condition. 

We remark that as a consequence of the rela­
tions (11) and (13) the functions AIII(l) ( s) coin­
cide for integer even l with the partial amplitudes 
A ( Z) ( s ) obtained by expanding the full amplitude 
A ( s, u ( s, zd, t ( s, z 1 )) in Legendre polynomials. 
Correspondingly the quantities a (Z) ( s) are equal 
for even l to the elastic jumps A(Z) 1ez ( s) of 
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these partial amplitudes. For integer odd l the 
functions aU) ( s) have no direct physical mean­
ing, they are needed however to reconstitute the 
quantity a ( s, t) by means of Eq. (15). We have 
made use of the complex angular momentum tech­
nique only for the purpose of extending the unitar­
ity condition (25) to odd values of l. 

To obtain the desired system of equations it is 
still necessary to express the function Alii by 
means of dispersion relations in terms of the 
quantity a, i.e. to write for the function Alii a 
formula analogous to the relation (9). It is easy 
to show that this formula is of the form 

16m1 

Am($, u, t) = ~ \' a,(s', t) ds' 
n j s -s 

4m1 

1 16m' dt' 
+n- ~ t'-t[a(t',4m2 -s-t')+a(t',s)] 

4m1 

1 16m2 d , 
+- \ -,-u- [a(u', t)- a(u', 4m2 - s- u')] 

n j u - u 
4m' 

+fur (s, u, t); 

I II 2 00~ dt' 00~ ds' , , f (s, u, t) = 2 , -,- cr (s, t) n .t-t s-s 
16m' 16m' 

du' 
---:--=-------~- cr (u 1 , t 1

). 

U 1 
- 4m2 + t 1 + s 

(26) 

(27) 

Indeed, upon substitution into Eq. (26) of the values 
of the function a obtained from relation (8), and 
making use of Eq. (2), we arrive at expression 
(12b) for the quantity Alii, in which 

1 ~ ds 1 

Aa(t,za)=- 1 (t )A1a(s1,t) 
:rt s - s , Za 

1 \' du 1 A ( 1 ) + rt j Ul- U (t, Za) 23 U ' t . (28) 

The integration here is over regions in which the 
corresponding spectral functions are nonvanishing. 

Under the assumption that the function 
fill ( s, u, t) is known in all three physical regions 
for s :s 16m2, u :s 16m2, t :s 16m2, the relations 
(14) and (26) constitute an exact system of equa­
tions which make possible the determination of 
the amplitude A ( s, u, t) for these values of the 
variables s, u, t. The function rill ( s, u, t) can 
not be obtained within the framework of the pres­
ent method. It is easy to see that it has no singu­
larities inside of the triangle defined by the lines 
s = 16in2, u =16m2, t =16m2 (see Fig. 1). We 
suppose that the function fill ( s, u, t) can be 
approximated with sufficient accuracy inside the 

triangle by a polynomial of low degree in the 
variables s, u, t. The coefficients in this poly­
nomial serve as the parameters of the theory. 
For simplicity we use this approximation in the 
present work all the way up to the boundaries of 
the triangle s :s 16m2, u :s 16m2, t :s 16m2, al­
though it is justified only inside the triangle at a 
certain distance from its boundaries. 

The solutions of the system of equations (14) 
and (26), obtained under these assumptions, can 
make physical sense only for values of the vari­
ables s, u, t somewhat smaller than 16m2• In­
deed, under the stated conditions the quantity 
a ( x, y) should for x = 16m2 vanish identically 
in y. Otherwise the function Alll(s, u, t) would, 
according to Eq. (26), have a logarithmic singu­
larity at s = 16m2 and t = 16m2 in the physical 
regions. It is obvious that in this case the elastic 
jump in the amplitude Awl ( s, z 1 ), also must 
vanish for s = 16m2 identically in z 1• Had we 
started from the exact values of the spectral func­
tions of the Mandelstam representation and de­
termined the quantities a (X, y) and fill ( S, U, t) 
by Eqs. (8) and (27), we would find that the func­
tion rill ( s, u, t) as well as the remaining three 
terms on the right side of (26) have logarithmic 
singularities for s = 16m2 and t = 16m2• These 
singularities compensate each other and the 
quantity Alii ( s, u, t) would have no singularities. 
The appearance of these singularities is due to 
the decomposition of the spectral functions into 
parts [ Eq. (2)]. It should be noted that within the 
framework of this method the function rill ( s, u, t) 
may be approximated by an expression which has 
logarithmic singularities at s = 16m2 and 
t = 16m2• This would require a different choice 
for the arbitrary parameters that enter the theory. 
In this way one could obtain a solution of (14) and 
(26) which would be physically meaningful up to 
the lines s = 16m2, u = 16m2, t = 16m2• 

3. SYSTEM OF EQUATIONS FOR THE PARTIAL 
AMPLITUDES 

In order to derive a system of equations for the 
partial amplitudes one must substitute the expan­
sions (15) and (16) into the relation (26) and make 
use of the unitarity condition in the form (25). It 
is first necessary to verify that the sought for 
functions will enter the equations only for those 
values of the independent variables for which the 
corresponding Legendre series converges. It 
follows from (8) that the region of convergence of 
the series (15) for the function a ( s, t) for 4m2 

< s :s 16m2 lies between the boundaries of the 
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spectral functions p (s, t) and p (s, u) (lines I 
and IV in Fig. 1). If the function a ( s, t) is known 
in that region then the quantity f3 ( s, t) can be 
found from Eq. (7) in the entire triangle s :s 16m2, 

u :s 16m2, t :s 16m2• This is true of all six func­
tions f3 that appear in Eq. (4) and, consequently, 
of the complete amplitude A ( s, u, t ). In the same 
way one easily verifies that if the function a is 
known within the region of convergence of the 
series (15), then the function Alii ( s, u, t) can be 
obtained inside the triangle s :s 16m2, u :s 16m2, 

t :s 16m2 from Eq. (26). On the other hand the 
function a Is, t) is determined for 4m2 :s s 
:s 16m2 with the help of the unitarity condition 
(25) in the entire region of convergence of its 
Legendre expansion, if the quantity Alii ( s, u, t) 
is known inside the triangle s :s 16m2, u :s 16m2, 

t :s 16m2• This justifies the transition to partial 
amplitudes in the Eqs. (14) and (26). 

The system of equations for the partial ampli­
tudes assumes a convenient form if the following 
abbreviations are introduced: 

~a(ll(s) = (s- 4m2)-1a(ll(s), (29) 

;prr(ll(s) = (s- 4m2)-IAIII (ll(s), (30) 

~(ll(s) = s-'l•(s- 4m2)1+'1•. (31) 

Upon substitution of Eq. (15) into Eq. (26), fol­
lowed by expansion of the resultant value for the 
function Alii ( s, u, t) in Legendre polynomials, 
we arrive at the following relation, valid for 
4m2 :s s :s 16m2: 

16m' ~(I) , 

}III(IJ (s) = ~ ~ :, (s} ds' + 1']<1l (s), (32) 
4m' 

2 00 4k 1 z,"(s) 

.,(I) (s) - "" + I dz Q (z ) ., - ( - 4 2)1 L...J 22k .) 1 l 1 
:n: s m k=O z,'(s) 

( 
1 4 2)1' [P (4m2 - 2s + U 1 + (s- 4m2) (z1 + 1) ) 

X u - m l' u' _ 4m2 

_ PI' ( 4m:~-=-2~~ U 1 
) J 

1 ~~ III + 1 dz1 Pz (zt) / (s, t (s, Zt), u (s, z1}). (33) 
2 (s- 4m2) _ 1 

Here Qz ( z) is the Legendre function of the second 
kind, 

1 s+ 4m2 
Zo (s) = 4 2 , s- m 

, () s +28m2 

Zo s = s- 4m2·· 

In the new notation the unitarity condition (25) 
for 4m2 :s s :s 16m2 becomes 

~(!) (s) = W(l) (s)l .Jill (I) (s) 12. 
We note that the unitarity condition is not used 
for s::::: 16m2• 

(34) 

Formulas (32), (33), and (34) constitute the 
desired system of equations. They contain 
"nonphysical" partial waves with odd l, which is 
their characteristic peculiarity. 

Let us also note the following circumstance. In 
the second and third terms on the right side of 
Eq. (33) the numerators in the integrands vanish 
simultaneously with the denominators. These 
integrands are, consequently, polynomials in the 
variables s and z 1• If in the solution of these 
equations only the first N partial waves are taken 
into account then the contribution from these two 
terms to the quantity 1J(Z) ( s) is equal to a poly­
nomial of degree N - 1 - l for l :s N - 1, and is 
equal to zero for l > N - 1. Let at the same time 
the function rill ( s, u, t) be approximated by a 
polynomial of degree K. Then the last term on 
the right side of Eq. (33) equals a polynomial in 
s of degree K - l. It is clear that the second and 
third terms of the formula contribute substantially 
to 1J(Z) ( s) only under the condition N - 1 > K. 

In the opposite case, when N - 1 :s K, the contri­
bution of these terms reduces to a modification 
of the arbitrary parameters that enter the poly­
nomial used to approximate the function 
rill ( s' u, t). On the other hand the ''nonphysical'' 
functions a (Z') with odd l' occur only in the 
second and third terms of Eq. (33). Consequently 
the properties of these equations due to the pres­
ence of these functions manifest themselves only 
when the number of partial waves N taken into ac­
count is sufficiently large. 

Let us discuss one of the possible methods of 
solving Eqs. (32) and (34). 2) We define the function 
F(Z) ( s) by 

16m' ~(I) 

p<IJ(s) = ~ \ ds'~. 
:n: .) S 1 -s 

(35) 
4m2 

2lAn analogous method was used by Mandelstam['] and 
Chew[•] in the complex angular momentum theory. 
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Equations (34) can be reduced with the help of 
(32) and (35) to the form 

ImF(ll(s) = ;;)'<l)(s) IF<1>(s) + 11<l)(s) 12. (36) 

For the solution of these equations one may utilize 
the method of successive approximations to deter­
mine F(Z)(s), and therefore also o;(Z) (s) = Im F(Z)(s), 
from some given functions 17 IZ) ( s ), and then de­
termine the next approximation to 17 IZ) ( s) from 
Eq. (33). In this way the problem reduces to the 
solution of Eq. (36) with respect to F(Z) ( s) for 
known functions 17( Z)_( s). 

Omitting the superscript Z, we set 

F(s) + 11 (s) = N(s) / D(s). (37) 

Here N ( s) is a function that is continuous and 
real for 4m2 ::s s ::s 16m2; D ( s) is a function 
analytic in the entire complex s plane except for 
the cut 4m2 ::s s ::s 16m2, which tends to unity as 
s - oo. On the cut itself the function D ( s) may 
have poles. As is well known [5], the function 
F ( s) + 17 ( s) may always be represented in the 
form (37). From Eq. (36) it follows that for 4m2 

::s s ::s 16m2 

1 ~ r 
Im F (s) + 11 (s) =- ffi (s) - ~1a;b (s- s;), (38) 

where the ai are the arbitrary parameters of 
Castilleja, Dalitz, and Dyson. [7] It follows from 
(37) and (38) and from the assumed behavior of 
D ( s ) as s - oo that 

1 1~7"' -- r J N (s') 
D(s) = 1-n) r ffi(s) + ~a;b(s'-s;) 8,_ 8 ds'. (39) 

.JJII~ - 1-l 

In accordance with the definitions of the functions 
F ( s) and D ( s) the function F ( s) D ( s) = N ( s) 
- 1) ( s) D ( s) is analytic in the entire complex s 
plane except for the cut 4m2 ::s s ::s 16m2• Writing 
a dispersion relation for this function and making 
use of Eq. (39) we arrive at a Fredholm type in­
tegral equation for the function N ( s ) : 

16m2 

N (s) = ! ~ ds' 11 (s;, =; (s);;; (s') N (s') 
4m2 

( ) ~ b 11 (s;) - T] (s) 
+TJS+LJi ' . S;- S 

t=l 

(40) 

where in place of the ai we have introduced new 
arbitrary constants 

b; = :n-1a;N ( s;). (41) 

Having solved Eq. (40), we can determine D ( s) 
from (39) with (41) taken into account and then 
determine F ( s) from Eq. (37). The solution has 
physical meaning if the function D ( s) so obtained 
has no zeros in the complex s plane. This condi-

tion imposes certain restrictions on the arbitrary 
parameters bi, and also on the function 1J ( s ), 
which is to say on the polynomial used to approxi­
mate the quantity fiii(s, u, t) in Eq. (33). 

4. SUBTRACTION TERMS 

Up to now it has been assumed that the ampli­
tude A ( s, u, t) satisfies a double dispersion 
relation with no subtractions. We shall now show 
that the system of equations obtained above re­
mains in essence unchanged when one considers 
the more general case. Suppose that for finite 
values of the variables s, u, and t the analyticity 
properties of the amplitude A ( s, u, t) are as 
before in agreement with the Mandelstam repre­
sentation. Let us assume, however, that the num­
ber of necessary subtractions in the dispersion 
relations in momentum transfer in each channel 
can increase without bound with increasing energy. 
Under these conditions it follows that for 4m2 

::s s ::s 16m2 the amplitude A is bounded by 

lA (s, t(s, zi), n(s, z1)) I::::;; clz11 11 -", (42) 

where n is a positive integer and E is an arbi­
trarily small positive number. Analogous in­
equalities hold in the other two channels. 

Let us define the functions a: ( s, t ), All ( s, u, t) 
and Alii ( s, u, t) for 4m2 ::s s ::s 16m2 by means 
of (8), (12a), and (12b), having performed in these 
formulas n subtractions and added to the right 
sides arbitrary polynomials in t (in u) of de­
gree n - 1 with s-dependent coefficients. Fur­
ther let us require that Eqs. (10), (11), and (13) 
be satisfied, i.e., that the even with respect to z 1 

part of the function Alii ( s, u ( s, z 1 ), t ( s, Zt )) 

coincide with the amplitude A ( s, u ( s, z 1 ), 

t ( s, z 1 )) and the even part of a: ( s, t ( s, z 1 )) 

coincide with the elastic jump of the amplitude 
Atez(s, z 1). In addition we subject the functions 
Alii and a for 4m2 ::s s ::s 16m2, -1 ::s z 1 ::s 1 to 
the relation 

Im Aili(s, n(s,zi), t(s,z1)) = a(s,t(s,zi)). (43) 

All these requirements can be satisfied for any 
given amplitude A ( s, u, t ). Their imposition, 
therefore, involves no loss of generality. 

Formula (26) and the resultant equalities (32) 
and (33) remain unchanged in the passage to these 
new conditions as a consequence of the definitions 
used for the quantities Alii and a:. Indeed, by 
comparing the jump of Alii and of the first three 
terms on the right side of Eq. (26) one can show, 
as before, that these jumps coincide in the strips 
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4m2 ~ s ~16m2 and 4m2 ~ t ~ 16m2• 3) The func­
tion fiii ( s, u, t ), as before, has no singularities 
inside the triangle s ~ 16m2, u ~ 16m2, t ~ 16m2 

and can be approximated there by a polynomial. 
Its analytic properties for finite values of the 
variables s, u, t are in agreement with the inte­
gral representation (27). However now such a 
representation for the function fill ( s, u, t) can 
not, generally speaking, be written down because 
of the infinite number of necessary subtractions. 
This circumstance does not, apparently, invali­
date formula (26). 

The unitarity condition (34) for all even l as 
a consequence of the definition of the functions 
Alii and a coincides, as before, with the analo­
gous condition for physical partial amplitudes and 
consequently should be fulfilled. This condition is 
also valid for odd l larger than n - E, since, as 
is well known, it can be continued in the complex 
l plane up to the line Re l = n - E. On the other 
hand the unitarity condition can not be extended 
to values of l satisfying the relation l = 2r + 1 
< n - E (r-an integer), since we make no as­
sumptions about the analytic properties of the 
functions A III(Z) ( s) and a (l) ( s) in the l plane 
to the left of the line Re l = n - E. 

Let us determine now what is the contribution 
to the right side of Eq. (33) from those functions 
a;il') ( s) for which l' = 2r + 1 < n - E, i.e., l' 

= 2r + 1 ~ n - 1. It follows from the remark made 
at the end of the derivation of Eqs. (32) and (34) 
that that contribution is equal to a polynomial in 
s of degree n - 2 - l for even n and of degree 
n - 3 - l for odd n. It can be discarded without 
loss of generality if the degree K of the arbitrary 
polynomial used to approximate the function 
fiii ( s, u, t) in Eq. (33) satisfies the conditions 

K ;:;:,: n - 2 for even n, 

K ;:;:,: n - 3 for odd n. (44) 

In that case one may assume that 

~(2r+l)(s) = 0 for 2r + 1 ~ n- 1 (45) 

and exclude from consideration the equalities (32)­
(34) with indices l satisfying the condition l = 2r 
+ 1 ~ n - 1. The remaining equations ( 32), ( 33), 
and (34) form a closed system. 

We note that the number n, which character­
izes the rate of growth of the amplitude in the 
variable t for 4m2 ~ s ~ 16m2, can not be found 

3)These functions, just like f111 (s, u, t), have no jump in 
t)le u variable (see Fig. 2). 

by theoretical considerations without making some 
additional hypothesis about the analytic properties 
of the function AIII(Z) ( s) in the complex l plane 
for Re l > 0. If no such hypothesis is used then 
the quantity K, and consequently the number of 
arbitrary parameters entering the equations, may 
be determined only by comparing the theory with 
experiment. This applies also to the arbitrary 
Castillejo-Dalitz-Dyson parameters which occur 
in the solution of the equations. 

5. CONCLUDING REMARKS 

Equations (32) and (34) are similar in form to 
the Chew-Mandelstam equations. [5J There are, 
however, significant differences. First of all, in 
Eq. (32) the right-hand cut has been cut off at 
s = 16m2• For this reason the well known proof 
that the Chew-Mandelstam equations can not be 
solved without a cut-off on the left cut [to] loses 
its force. This proof is based on the fact that the 
left and right hand cuts meet at infinity in the s 
plane, combined with the fact that the unitarity 
condition holds on the right-hand cut for arbi­
trarily large s. Such considerations are not ap­
plicable to the system of equations (32) and (34). 
Secondly, the functions 77(Z) in (32) are determined 
indirectly and not by means of dispersion rela­
tions for partial amplitudes. The jumps in these 
amplitudes across the left-hand cut are not in­
volved in the equations. This makes it possible to 
avoid going outside the region of convergence of 
the corresponding Legendre series. Finally, Eqs. 
(32) and (34) reflect more fully the analytic 
properties of the amplitude because the "unphysi­
cal" partial waves with odd l are taken into ac­
count. 

The number of arbitrary parameters entering 
these equations is in no way related to the num­
ber of partial waves taken into account. As is 
well known such a relation does hold in the case 
of the Chew-Mandelstam equations cut off on the 
left-hand cut. Equations with the number of arbi­
trary parameters independent of the number of 
partial waves considered, were also obtained by 
Malakhov. [tt] In his work, however, the "unphysi­
cal" partial waves are not used. Therefore the 
contribution of the near part of the spectral func­
tion to the amplitude is not fully taken into account. 

As already noted, one can obtain with the help 
of (32) and (34) a more exact value for the scatter­
ing amplitude in the low energy region if the func­
tion fill ( s, u, t) in Eq. (33) is approximated not 
by a polynomial but by an expression having 
logarithmic singularities for s = 16m2 and 
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t = 16m2• Such an approximation, of course, re­
quires a different choice for the arbitrary 
parameters entering the theory. In that case the 
quantities TJ(Z) ( s ), obtained from Eq. (33), will 
also have logarithmic singularities for s = 16m2 

and, consequently, the integral equation ( 40) will 
become singular. The method for solving equa­
tions of this type is outlined in the work of Chew[9J 
where it is shown that the diffulties connected with 
the singularity can be overcome. 

The system (32) and (34) permits one to find 
the amplitude only below the threshold for in­
elastic processes. On the other hand the energy 
region of greatest importance from the point of 
view of explaining experimental data lies above 
these thresholds. In particular, resonances in the 
1T1T scattering amplitude are observed only at 
energies in excess of four pion masses. It would 
therefore be of great value to generalize the 
method described here to include higher energies. 
The main difficulty that one encounters here has 
to do with the fact that the region of convergence 
of the Legendre series is limited. This difficulty 
may be circumvented with the help of the method 
described in [12J, which, however, substantially 
complicates the system of equations. 

It should be remarked that recently a system 
of equations has been proposed for the analysis 
of low-energy scattering, based on the assumption 
that the scattering amplitude is a meromorphic 
function in the complex l plane for Re l > 0. [9] 

These equations are analogous in form to Eq. (40) 
except that the index l is allowed to assume a 
continuous set of values. It is obvious that such 
equations are substantially more complicated than 
the partial wave equations for integer Z. There-

fore the equations containing only functions with 
integer values of l continue to be of substantial 
significance in application to the problem of low 
energy scattering, even if one starts with the hy­
pothesis that the amplitude is a meromorphic 
function in the l plane. 

The authors are grateful to Prof. Yu. V. 
Novozhilov for discussion of this work. 
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