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Three- and four-component phases are introduced which transform respectively like three­
dimensional vectors and like four-component spinors. It is shown that solutions of the equa­
tions for zero-mass fields can be constructed on the basis of these phases, and that such 
solutions, like the solutions with scalar phases, are independent of the choice of reference 
system. 

IN the attempt to construct a theory of quaternion 
functions of a quaternion variable in analogy with 
the theory of complex functions it is natural to take 
as a foundation a Cauchy theorem, which is easilJ 
formulated for this case. On this basis Fueter [ 1 

has constructed a theory of quaternion functions 
which depend on a quaternion associated with a 
four-dimensional Euclidean space. If, on the other 
hand, we use as the variable a quaternion associa­
ted with the space of events, 

a= 1, 2, 3, (1) 

where ea are quaternion units with the well known 
multiplication law, [2] i is the ordinary imaginary 
unit which commutes with all of the ea, and xa are 
the coordinates of the space, x4 being time (the 
speed of light c = 1), then the differential conditions 
that are equivalent to the quaternion analog of 
Cauchy's theorem are precisely the equations 
given in [ 3] for the fields that make up a quadruplet 
of zerons. This is the connection between the quad­
ruplet type of particle systematics and the geo­
metrical structure of the space of events of the 
special theory of relativity. 

Quaternions are also a convenient instrument 
for constructing solutions of the system of equa­
tions (1) of[ 3J. Let X be the quaternion obtained 
from X by replacing i by - i, and let 

(2) 

be a quaternion with fixed components. With the 
notation 

we can write the product of the quaternions K and 
X in the form 

(4) 

We shall call the set of components of the quater-

nion (4) the phase. 
On the basis of the components of the phase we 

can construct a solution of the system (1) of[ 3J. 
Let Cz be constants, in general complex, and let 
f(am) be a scalar analytic function of the complex 
argument am. That it be analytic is an important 
requirement, since it assures that for any m the 
derivative of f(am) with respect to its argument 
exists. 

We set 

Yz = Czf(am), l, m = 1, 2, 3, 4. (5) 

Then, as can be easily verified, the set of com­
ponents (y1, y 2, y3, y4) defined by (5) will for each 
fixed value of m form a solution of the system in 
question if the following conditions are satisfied: 

where 

a= 
ktk3- ik2k4 

kt2 + k22 

(6) 

(7) 

and uy is a Pauli matrix. We note that the condi­
tions (6) and (7) do not depend on the choice of the 
phase component am in (5). 

A well known solution of this type is the solution 
with scalar phase, obtained from (5) for m = 4. 
This solution has the obvious property of invari­
ance: a Lorentz transformation in the space of 
events does not change the form of the conditions 
(6) and (7), and Cz and kZ are merely replaced by 
corresponding quantities with primes. It is under­
stood that kz and xz have identical transformation 
properties. 

With a view to the Lorentz invariance and 
linearity of the system of equations in which we 
are interested, we can easily perceive that the 
solution in the form (5) will be invariant in the 
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sense just indicated if the components of the phase 
transform according to representations of the 
Lorentz group. Accordingly the problem arises of 
finding suitable representations of the Lorentz 
group for the transformation of the components kz 
so that the phase components am will in turn define 
a representation. We see at once that the situation 
that arises in connection with this problem is the 
same as that on which the quadruplet systematics 
is based [ 3]: there exist two ways of securing the 
invariance of the solutions, and the scalar phase is 
included in a quadruplet of phases analogous to the 
quadruplet of zeron fields. The question remains 
open, however, as to whether all existing possi­
bilities are thus exhausted. 

Let us consider the special case in which the 
components of the quaternion (I) transform accord­
ing to a two-parameter Lorentz matrix. 

X2 _ Sill <jl3 COS <jl3 0 0 X2 • (
xl ) (c?s <pa - sin <pa 0 0 ) (x1:) 
x3 - 0 0 ch <ps sh <ps x2 (8)* 
X4 0 0 sh <ps ch <ps x/ 

The representation for the transformation of the 
components kz can be chosen to suit our purpose 
in two ways. 

1. The components kz transform like xz. In this 
case a4 is a scalar, and the remaining components 
transform with a complex rotation matrix: 

(al ) (c?s a3* - sin aa* 0) (a1:) 
a2 = sm a3* cos a 3* 0 a2 ' 

a3 0 0 1 · a3' 
(9) 

where aj = cp 3 - icp 6• In this case the kz are inter­
preted as the components of the wave vector or the 
momentum vector, and the vector phase is the com­
plex momentum, whose real and imaginary parts 
have well known meanings. Unlike a de Broglie 
wave (scalar phase), a solution with a component 
of the vector phase describes the propagation of a 
particle with constant projections of the velocity 
and the angular momentum along a fixed direction. 

2. Along with the transformation (8) the com­
ponents kz are transformed with the following com­
plex Lorentz matrix: 

- ~~~ :::z ~ g ) (:~:) . 
0 cos a3/2 - i sin a3/2 k3' 
0 - isin aa/2 cos rJ.a/2 k•' 1 ( 1 0) 

Then the components az of the phase transform 
like a four-component spinor: 

(
al) (cos a3*/2 -sin a3*j2 0 
a2 _ sin a3* /2 sin a3* /2 0 
a3 - 0 0 cos a3*/2 
a, 0 0 -sin a3*/2 

0 )(a1') 0 a2' 
sin a 3*/2 a3' 

cos cr3* /2 al 
(11) 

*sh =sinh, ch =cosh. 

and the quantities 

(12) 

are two-component spinors. In this case, however, 
it is not clear how the components kz and the phase 
components az are to be interpreted physically. 

We remark that the consideration of the special 
case (8) does not restrict the generality of the con­
clusions. 

An example of a noninvariant solution is the 
solution (5) already given, if we assume that the 
kz are not transformed at all. Another example is 
a solution of the form of (5), but constructed on the 
basis of the components of the product KX of the 
quaternions (2) and (1). If we assume that in this 
case, along with a Lorentz transformation in the 
space of events, the components kz transform in 
accordance with the two hypotheses indicated above, 
then such solutions will be invariant under space 
rotations, but not under Lorentz transformations. 

The identity which we have noted in the invar­
iance properties of the solutions with scalar, vec­
tor, and spin or phases gives reason to suppose that 
the invariant solutions with nonscalar phases, like 
those with scalar phases, describe possible states 
of zero-mass fields. 

If in the spirit of this hypothesis we use the 
solution with the component a 1 of the vector phase 
in the theory of the two-component neutrino, then 
the helicity operator is replaced by the operator 

H1 = [ i ( kzcr3 - k3crz) - k.ai] I k1. ( 13) 

The components of the vector and spinor phases 
can also be used for the construction of invariant 
solutions of the Klein-Gordon equation, but in this 
case the only suitable form for f(am) is exp (iam). 

The author is deeply grateful to V. A. Yaku­
bovich for interesting discussions. 

1 R. Fueter, Comment. Math. Helv. 7, 307 (1935). 
2 B. L. van der Waerden, Moderne Algebra, Vol. 

2, Berlin, Springer, 1931. 
3 R. V. Smirnov, JETP 46, 1637 (1964), Soviet 

Phys. JETP 19, 1107 (1964). 

Translated by W. H. Furry 
198 


