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The problem of two Coulomb centers is investigated in the quasiclassical approximation. 
Interpolation quantization formulas are obtained which are valid for any distance between 
the centers, and expressions for the wave functions are also obtained. Comparison with 
the results of an exact calculation shows that the quasiclassical approximation is quite 
accurate even for terms with low quantum numbers. 

SEVERAL quantum-mechanical problems lead to 
the so-called two center problem, i.e., to the de­
termination of the wave functions and the energy 
levels of a charged particle moving in the field of 
two fixed Coulomb centers with charges Z1 and Z2• 

A particular case of this problem-the hydrogen 
molecular ion-has been investigated by many au­
thors. (We note that even prior to the creation of 
quantum mechanics this problem has been inves­
tigated in Pauli's dissertation [t] on the basis of 
the old Bohr theory.) At present there exist nu­
merical calculations of several low lying terms 
( cf., [2,3] and the references given there). More­
over, there exist many approximate methods of 
solving this problem ( LCAO, UA, the variational 
method, perturbation theory), which, however, 
are valid only for R » 1 or R « 1 (R is the 
distance between the centers). 

In this paper the two -center problem is dis­
cussed by means of a quasiclassical approxima­
tion. It is well known that the WKB method is ef­
fective for large quantum numbers, but one might 
expect that quasiclassical considerations will in 
this case give good results also in the case of 
small quantum numbers, since it is well known 
that in the field of one Coulomb center the quasi­
classical energy levels coincide with the exact 
ones not only for n » 1, but also for n = 1, while 
the two-center problem in the limits R- 0 and 
R-oo reduces to the problem under considera­
tion. 

The use of the WKB method in the earlier 
papers encountered peculiar difficulties associ­
ated with the divergence of the phase integral for 
0'-terms. The reason for these difficulties lies, 
essentially, in the incorrect choice of the quasi­
momentum [ 4J, which, as is well known, is not de­
termined uniquely and admits the so called Langer 

transformation [5]. Different authors [SJ have sur­
mounted these difficulties in different ways, some­
times very cleverly, 1> but no single unifying method 
has been proposed and, probably, as a result of 
this the WKB method has not been applied to this 
problem subsequently. 

In the present paper it is shown that if the quasi­
momentum is chosen correctly the difficulties men­
tioned above do not arise and, therefore, we suc­
ceed in obtaining a closed solution of the problem 
over the whole range of variation of R with suffi­
ciently good accuracy. 

1. BASIC EQUATIONS 

The Schrodinger equation for the two center 
problem has the form in atomic units li = e = m = 1 

-~L\'IJ+ (-~- z2 )'IJ=E¢-. 
2 r1 r2 

(1) 

In extended elliptic coordinates 

y 
cp =arc tg -- (2)* 

X 

the equation is separable, and the normalized so­
lution can be obtained in the form 

(3) 

In this case we have 

d dX df (~2 -1) -df 

+( -p2~2+ b'~+A -~)x= o, 
\ ~-1 . 

(4) 

l)For example, Kramers has utilized a rather unique method 
of regularization of the phase integral. It is of interest to note 
that the idea of the method is in general terms analogous to the 
idea of regularization in quantum field theory. 

*arctg = tan_,. 
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where A is the separation constant, 

p2 = -R2E 12 = R2xl 4, b = R(Z2- Z1), 

b' = R(Z2 + Z1). 

The total energy is given by 

W = E + Z1Z2 I R. (6) 

An equation of the form 

d dy 
dx p(x) -dx + r(x)y = 0 (7) 

by a change in the independent variable and in the 
dependent function 

t=x(x), y=u/[p(x)'X'(x)}'f, (8) 

is brought to a form convenient for the application 
of quasiclassical considerations: 

d2ul dt2 + q(t)u = 0. (7') 

Since x(x) is an arbitrary function such a reduc­
tion is not unique. 

As has been shown previously [4], in the case 
when p(x) has simple zeros [which are singular 
points of equation (7)] one should utilize the trans­
formation 

t = ~ dx/p(x), y(x)=u(t). (8') 

Such a replacement by removing the singular 
points of equation (7) to t = ± oo guarantees the 
correct behavior of the quasiclassical solutions 
at the singular points and the correct phase far 
from the turning points. Moreover, as we shall 
show, (8') also gives the correct behavior of the 
terms for R-- 0 and R--oo. utilizing (8') and 
returning to the original variables we obtain the 
quasiclassical solutions of (4) and (5) in the form 

1l 

Y(TJ) = [(i-TJ~~(TJ)}'f,exp{+i ~ Q(TJ)dTJ}, (9) 
'lt 

- [ p2T)z + bTJ - A - mz l'h 
Q(TJ)- 1-T)Z (1-T)2)2_ 

[ p2- A+ bTJ m2 ]'/, ( 9 ') 
= - p2 + 1 - 112 - ( 1 - 112) 2 ' 

£ 

X(£)= [(£2 _ ~~~(£)}';, exp{ + i ~ R(£)d£ }. (10) 

_ [ - p2~~ + b'£ +A _ m 2 l';, 
R(s)- ;;z-1 (£2-1)2_! . (10') 

It can be easily seen that this form of quasimo-

menta coincides with their classical expressions 
in the Hamilton-Jacobi method[7J. 2> 

The quantization conditions for the quasimo­
menta R ( ~ ) and Q ( T/ ) yield respectively the sep­
aration constants A~ and AT/ as functions of the 
quantum numbers n~, nT/, m and of the param­
eters p2 and R, while the equation A~ = AT/ yields 
the electronic terms E = En~ nT/m ( R). 

2. QUANTIZATION CONDITIONS 

In Eq. (4) the function [Q(77)] 2 plays the role of 
an effective potential for zero quantization energy. 
Depending on the values of the parameters p2 and 
A for m "" 0 the potential can have the form I or 
II corresponding to the curves I and II shown in the 
lower part of Fig. 1. 

In case I there exist two regions of classical 
motion 77 1 < 17 < 77 2 and 773 < 17 < 774 separated by a 
potential barrier. For p2 » 1 this corresponds to 
the separated atom approximation. Case II for 
p2 « 1 corresponds to the united atom approxima­
tion. (The special case m = 0 is shown in the 
upper part of Fig. 1. In this case 111 = -1, 774 = 1 
become the extreme "turning points.") 

Utilizing the expressions for A for R » 1 and 
R « 1 given, for example in [HJ, it can be shown 
that in these two limiting cases the motion is 
quasiclassical in case I (p2 » 1, A » 1) corre­
spondingly in the left hand side and the right hand 
side potential well if 

m21 (p2-A +b) ~1- TJ2~ (pz -A+ b) lpz, (11) 

i.e., 

(p2 - A - b) I p ~ 2 ( 2n2 + I m I + 1) ~ 1, 

(p2 - A + b) I p ~ 2 ( 2nz' + I m I + 1) ~ 1 (11 ') 

(n2 and n:! are the numbers of zeros of the wave 
function in each of the two wells ) ; and in case II 
(p2 « 1, A < 0) if 

2)Usually in the WKB method one utilizes the transforma­
tion 

l=x, y=u/yp(x), (8") 

and this leads in the present problem to quasimomenta which 
differ from'(9') and (10') by the replacement m' --> m' - 1. In 
early papers [6 ] it is this particular circumstance that led to 
the difficulties mentioned in the Introduction. Similarly (8 ") 
gave m' - 1 instead of m' in the quasiclassical discussion of 
the Stark effect in the hydrogen atom [8 ], and it was empirically 
established that the correct result is obtained by neglecting 
unity [9]. In exactly the same manner one proceeded by replac­
ing l(l + 1)--> (l + V2)' in the radial equation prior to the appear­
ance of Langer's paper [10]. 
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FIG. 2. The terms of the H2 + system. Solid lines-values 
from [3], dotted lines-values calculated according to (20). The 
Sfrr term is calculated according to formulas (20). 

(12) in case II 

i.e., 

(12') 

(n71 is the number of zeros of the function in the 
common well ) . 

In these limiting cases the quantization condi­
tions can be simply written as conditions on the 
phase integrals over the range of quasiclassical 
motion in each of the wells (case I) or in the 
common well (case II). For each given term 
En~n17m as R is varied case I goes over con­
tinuously into II. However, the usual quantization 
conditions are in this case, naturally, not "smoothly 
connected" at the top of the potential barrier since 
in this region they are not applicable at all. This 
is related to the fact that in the derivation of these 
conditions in case II reflection in the case of en­
ergy above the barrier is not taken into account, 
while in case I transmission at energies below the 
barrier is neglected. The two corrections being 
exponentially small far from the top of the barrier 
become quite significant near the top of the barrier. 
By utilizing successively the method of going around 
the turning points in the complex plane proposed by 
·zwaan [12], and the equation of continuity of current 
(as was done by Kemble [13]), one can easily obtain 
( cf., Appendix) interpolation formulas valid right 
up to the top of the barrier. We have in case I: 

cos(wz + wz') =-cos 'A· cos(wz- w2') (13) 

or* 
ctg w2 · ctg wz' = tg2 (A / 2) ; 

*ctg =cot, tg =tan. 

cos roo= -sinE· cos (w- w') (14) 

or 

ctg w • ctg w' = tg2 (n/ 4- E/ 2). 

All the notation is defined in the Appendix. 
For R - oo the quantity i\. - 0 and for R - 0 

the quantity € - 0. Therefore, formulas (13) and 
(14) go over into the usual quantization formulas. 
At the top of the barrier i\. = € = 7T/4 [cf., (A.ll)], 
i.e., formulas (13) and (14) become smoothly joined 
and coincide at that point with the exact quantiza­
tion conditions obtained in this limiting case in the 
paper of Kramers and IttmanC14J 3> (cf., Figs. 2-4; 
the points of intersection of the exact and the 
quasiclassical terms correspond to the position of 
the top of the barrier). Thus, formulas (13) and 
(14) give an interpolation of the quantization con­
ditions right up to the top of the barrier. 

The effective potential [R( ~ )] 2 of equation (5) 
has the form of an ordinary well, and, therefore, 
the quantization conditions can be written down 
immediately: 

(15) 

3)f'or energies lying near the top of the barrier <IE - U0 I = 
S -> 0) the latter can be approximated by a parabola. In this 
case the problem can be solved exactly in terms of parabolic 
cylinder functions. In this case the exact quantization condi­
tions give I"- - rr I 41 "' S ln S, while formulas ( A.ll) ( cf., below) 
yield I"-- rr/41 - S, i.e., the results agree with logarithmic ac­
curacy. However, far from the barrier the quantization formulas 
(13) and (14) go over into the usual formulas, while the "exact" 
ones are valid only near the top of the barrier. 
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FIG. 3. The terms of the system Z, = 1, Z 2 = 2. Solid lines­
according to ['], dotted lines-according to (13) and (14). 

At the same time in the case m ~ 0 we always 
have ~ 1 > 1 (~ 1 is the smallest positive root of 
the equation R( 0 = 0 ). If m = 0, then ~ 1 - -1 
for p2 - oo • For ~ 1 < 1 the lower limit in (15) 
must be set equal to unity. (We note that for val­
ues of parameters corresponding to ~ 1 = 1, the 
quasiclassical and the exact a-terms coincide 
[with the exception of 1sa, (cf., Figs. 2-4)]. 

3. EVALUATION OF E AND A IN LIMITING 
CASES 

All the quantities in (13) and (14) are expressed 
in terms of complete elliptic integrals. But in the 

o __________ ~5__________ mn 
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FIG. 4. The lower terms of H2 +. Solid lines-values from 
['], dotted lines-values calculated according to (20). Dot­
dashed lines-calculations according to the usual quasiclassi­
cal formulas. 

limiting cases R - 0 and R - oo it is simpler to 
start with the definitions utilizing for expansions 
into series relations (11) and (12). (In particular, 
sometimes it is very convenient to utilize Som­
merfeld's method [ 15]). 

For R - oo one can quantize independently in 
each well; conditions (13) reduce to 

co2=n(n2+ 112), co2'=n(n2'+ 1/2). (13') 

Then deep below the barrier we obtain as a result 
of quantization in the left hand well (up to fourth 
order terms ) : 

A;= p2 + 2p(2nt + lml + 1) -R(Zt + Z2) 

+ 1/2(2n1 + 1) (2nt + lml + 1)- 1/2p-1R(Zt + Z2) 

X(2nt +lml+ 1) - 1/tap-3R2(Zt + Z2) 2 (2nt + lml + 1) 

- 1/ 8 p-1(2nt+1)(2nt+ lml +1)(2nt+21ml +1) 

+ 3/tap-2R (Zt + Z2) (2nt + I m I + 1)2, (16) 

A 11 = p2- 2p(2n2 + lml + 1)- R(Z2- Zt) 

+ 1/2(2~ + 1) (2~ + lml + 1) + 1/2p-1R(Z2- Zt) 

X(2n2 +lml+ 1) + 1/tap-3R2(Z2-Zt)2(2n2+ lml + 1) 

+ 1/sp-1 (2~ + 1) (2~ +I ml + 1) (2n2 + 2Im I + 1) 

+ 3/tap-2R (Z2- Zt) (2n2 + I m I + 1)2. (16') 

Similar formulas are obtained for the right hand 
side well by replacing z1 - z2, n2 - n2. 

Expressions (16) and (16') differ very little from 
those obtained in [16] even when n1 = n2 = m = 0. 
However, for the energy levels condition A~ = AT/ 
yields ( n = n1 + n2 + I m I + 1 ) 

Zt2 z2 3 z2 
E =- 2n2- R+ 2-n(nt- ~) ZtR2' (17) 

i.e., the correct expression for the linear stark 
effectC9J for arbitrary n. 

For R- 0 we obtain ( l = n0 +I m I, N = n1 + l + 1) 

1 R2 (Z1 + Z2) 2 [ 3m2 J 
-16 (Z+1i2)3- 1-(Z+i/2)2' 

(18') 

(Zt +Z2) 2 
E=- 2N2 

R2 ZtZ2(Zt + Z2) 2 [ m2 J 
--4 N3(Z+ti2)s 1 - 3 (l+ti2)2 • (19) 

in good agreement with [B]. 
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4. THE CASE Z1 = Z2 = 1 

For the hydrogen molecular ion the quantization 
conditions (13) and (14) become greatly simplified: 

Wo = n(no + 112) + (-)n•e, Wt = n(n1 + 1/2), 

002 = n(n2 + 1/2) + (-)n•A./2. (20) 

n0 = 2n2 for the symmetric term, n0 = 2n2 + 1 
for the antisymmetric term. We obtain the split­
ting of these levels below the barrier for m = 0. 
From (20) we obtain 

awl awl 
dWt = ap Llp + iJA M = 0; (21) 

Llp = A awl I a ( ffi2, wt) . 
aA ' a(p, A) ' (22) 

a ( ffi2, wt) ,;2 n 
a(p, A) ::::::- -4--p:i' K=2~B( l"A) 

p p ' 
(22') 

where B ( k) is an elliptic integral [U J. 
Utilizing (6), (16'), and the properties of ellip­

tic integrals we obtain 

LlE = _1 __ ~ ( Spe ) 2n,H e-2p (23) 
n n 2n2 + 1 

and with the same degree of accuracy as in 
stirling's formula 

we obtain for n2 » 1 the formula from the paper 
of Smirnov [17] ( K = - 2E) 

2x (4p)2n,H 
LlE= -----e-2P, 

n n2!n2! 
(24) 

Formula (24) is valid for R » 1 and for arbi­
trary n2, formula (23) is valid for arbitrary R 
(up to the barrier ) and n2 » 1. For the ground 
state (23) yields 

(23') 

and formula (24) yields 

ment with exact calculations compared to (23') is 
apparently explained by the fact that for R = 9 the 
asymptotic region has not yet been reached. 

5. COMPARISON WITH EXACT CALCULATIONS 

The systems of transcendental equations (13), 
(15) and (14), (15) were solved numerically by an 
electronic computer by the method of minimization, 
for the first eight terms of the hydrogen molecu­
lar ion and for the system Z1 = 1, Z 2 = 2. The re­
sults are shown in Figs. 2 and 3. We have also 
given there for comparison the exact results of 
the work of Bates et al. [a] It can be seen that the 
results agree well for R « 1 and R » 1, and also 
exactly at the barrier for R = R0 (the agreement 
is better for R > R0 ) • In the immediate neighbor­
hood of the barrier the agreement' is worse, it is 
better for 11'-terms than for a-terms, and among 
the latter it is better for p- and d-terms, than 
for s-terms, as should be expected from quasi­
classical considerations. However, the relative 
error nowhere exceeds 5% (with the exception of 
the lsa term, Z1 = 1, Z 2 = 2 where the error 
reaches 10%). 

Figure 4 also shows the 2pa and lsa terms of 
the H; system evaluated by three different meth­
ods: 1) exact calculation from [aJ, 2) calculation 
in accordance with formulas (20), 3) calculation 
using ordinary quasiclassical formulas. It can be 
seen that quantization in accordance with formulas 
(20) gives the best approximation. 

6. WAVE FUNCTIONS 

Utilizing the results in [4.] we write out the nor­
malized wave functions for the two center problem 
in the region of quasiclassical motion for the lim­
iting cases of potentials I and II. 

In case I far below the barrier we have in the 
left hand well (K = - 2E) 

2 x''• cos(Jt(s)- n/4) cos(J2(TJ)- n/4) 
'ljln,n,m(s, TJ, cp) = n'" n'l• [(s2-1)R(6)]''• [(1- TJ2)Q(TJ)]''•' 

(25) 
where 

e 'I 

It(s) = ~ R(£)ds, 12(11) = ~ Q(TJ)dTJ. 
s• fll 

LlE = 4e-IRe-R. (24.') Correspondingly in the right hand well we have ob-

For R = 9 it follows from (23') that D.E = 2.0 x 10-a, tained the same expression with the replacement 
while from (24') we obtain D.E = 2.3 x Io-3• An ex- K - K', n- n', 171 -17a· 
act calculation [3] leads to D.E = 1. 7 x lo-a; without In case II far above the barrier we have 
going to the limit (n2 » 1) we obtain in accordance 1Jl (s ) _ 2 x'1•(-A)'1• 
with formula (23) D.E = 1.9 X 10-3; an exact calcu- Nlm 'TJ, cp - n"' [R(Zz + Zt)]''· 

lation in accordance with equations (20) yields D.E cos(lt(s)-n/4) cos(J2(TJ)-n/4) 
= 1.5 x Io-3. The fact that (24') gives worse agree- x [(s2 -1)R(s)]''• [(1- TJ2)Q(TJ)]''• · <26) 
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It can be shown that as R- 0 Eq. (26) coin­
cides with the normalized wave functions of a 
hydrogen-like atom of charge z1 + Z2, while as 
R- oo Eq. (25) coincides with the asymptotic ex­
pression for the wave function of an electron of an 
isolated atom in parabolic coordinates. 

(a similar relation for the wave reflected to the 
right is obtained if we utilize the complex conju­
gate turning point TJ3 ) • 

Formula (A.1) does not take into account the 
fact that the coefficient of the transmitted wave 
differs from unity, sine~ this difference, being an 

The functions (25) and (26) for ~- 1 and 
have the correct behavior: 

TJ - ± 1 exponentially small quantity of the second order 
far from the barrier, cannot be determined cor­
rectly. However, as Kemble has noted [13] the use 
of the condition of conservation of current enables 

Similarly for the wave functions of the continu­
ous spectrum normalized to a a-function of k 
( k is the electron momentum) we obtain (after re­
placing p2 - - s 2, s = Rk/ 2 ) : 

one to extrapolate the quasiclassical formulas 
right up to the top of the barrier where the re­
flection coefficient is no longer small. Introducing 
the coefficient g into the incident wave (A.1) and 

X()=(~~)''·-~ cos(/i(~)-11:/4) 
~ 11: R [(~2 -1)R(~)] ' 

_ ( 2 )''• _ ,1, cos(/2(11)- n/4) 
Y(rt)- Jt ( A) [(1-rt2)Q(rt)]''• 

determining it from the condition of the conserva­
(27) tion of current we obtain finally for the waves trav­

elling respectively to the right and to the left above 
(2S) the barrier: 

APPENDIX 

We shall derive the quantization conditions for 
potential ll (cf., Fig. 1) taking into account reflec­
tion above the barrier, and for potential I taking 
into account transmission below the barrier. A 
problem of this type has an exact meaning near the 
top of the barrier, where the coefficient of reflec­
tion above the barrier (and correspondingly the 
coefficient of transmission below the barrier) is 
not small, and taking it into account does not ex­
ceed the accuracy of the quasiclassical approxi­
mation. However, as long as the formulas ob­
tained high above the barrier (and correspond­
ingly deep below the barrier ) go over into the 
usual quantization rules they can be regarded as 
interpolation formulas. 

In the case under consideration of energy above 
the barrier there exist two real and two complex 
conjugate "turning points" Q ( T1) = 0; T/1 = a, TJ' = b, 
T/2,3 = 0! ± i(:J (cf., Fig. 1 ). Utilizing the complex 
turning point method proposed by Pokrovski1 and 
KhalatnikovC18] we can establish the connection 
between the quasiclassical solutions taken from 
different turning points: 

1 ( } . 1 {"} --- exp i ~ Q drt - ie2i'Po-= exp -i) Q drt +-

1/Q a 1/Q a 

11 

+- ei('Po+'Po') 1/~ exp { ib) Q drt} ; (A.1) 

b 

c:po' = ~ Qdrt (A.2) 
a l1z 

1 11 } . 1 l-
g-=ex:p{i) Qdrt -ie2""e-0 -=:-exp{ -i ~ Qdrt}+-

"YQ a 1/Q a 

+- ei(ro+ro') 1 exp { i ) Qdrt}' 
"YQ b 

(A.3) 

- ie2im' e~ -y~ exp { i ~ Qdrt}, 

where 

(A.3') 

" II 
w = ) Qdrt-) Im Q(a + it)dt, 

a 0 

b II 

w' =) Qdrt + S Im Q(a + it)dt, fJ = ~ Re Q(a + it)dt, 
" 0 ~ 

g = (1 + e-2a)'l•, roo= w + w' =) QdTj. (A.4) 
a 

.. 
' I \ 
' I I I 

' I I 
I 

' I 

' + + 

f,\ '~ ~I ,''4 
I ' I I 

I ' I ' '. 
I I 

I I 

+ 

FIG. 5. Cuts in the complex plane shown by heavy lines. 
Dotted lines show the Stokes lines, i.e., lines along which 
the coefficients a± in the asymptotic solution at the turning 
points 7Ji: 

1 
1Jl=-=(a+exp{-it'/•}+a_exp{ it'/o}] (t= 111--TJdel•) 

1'Q 

undergo a discontinuous change. 
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In the case of energy below the barrier there 
exist four turning points ( cf., Fig. 1 ) . By defining 
the cuts Q(17) in the complex 17-plane as in Fig. 5 
and by continuing the solutions from the left hand 
"well" into the right hand "well" along the upper 
edge of the cut, and from the right hand "well" into 
the left hand "well" along the lower edge of the cut 
(again taking conservation of current into account ) 
we obtain 

h = (1 + e-2K)'I•. (A.6) 

It can be easily seen that (A.3) and (A.3') coin­
cide with (A.5) and (A.5') after the replacement 

Therefore, in subsequent discussion we shall con­
sider in detail only the pair (A.5) and (A.5'). 

From the requirement of exponential damping 
of the solution outside the region of quasiclassical 
motion near the turning points 171 and 174 we must 
respectively choose the solutions 

t) t) 

cos( ) Q dl] - ~ ) , 
'l• 

c cos ( ) Q dl] + ~ ) . 
'l• 

+- ei(c•,+ro,') e-K ~ exp { i ) Q d1]}, 
iQ II• 

Apart from normalization we can obtain from 
(A.5') (A.5) and (A.5') the following correspondence be­

tween the solutions at the turning points '111 and 174: 

where 

( 

cos (~ Qdtj- ~ ) ) ( cos (~ Qdt] + ~ ) ) 
11, K ( h sin (ro2 + ro{)- sin (roz- roz') h cos (roz + roz") + cos (roz- ro2')) 71 

11 n -e -hcos(roz+roz')+cos(roa-roz') hsin(roz+roz')+sin (roz-roz') "'!• n · 

sin(~Qdt]-4) sin(~Qd'l+T) . ~ 

(A.8) 

For the required correspondence of the solutions 
t) t) 

cos( ) Q dl] - ~ ) -+ C cos ( ) Q d1] + : ) 
~I ~4 

it is necessary to set 

hcos (ro2 + ro2') +cos (ro2- ro2') = 0. (A.9) 

Similarly for the pair (A.3) and (A.3') 

g cos (ro + ro') + e-0 cos (ro- ro') = 0. (A.10) 

Introducing the notation 

(A.ll) 

we obtain formulas (13) and (14) given in the text. 
For 6 - oo and K - oo they reduce to the well­
known ones. 

The constant C is determined [utilizing (A.5), 
(A.5') and (A.9)] from the condition 

C2 = h + cos2 ro2 = sin 2ro2 (A. 12) 
h + cos 2ro2' sin 2ro{ • 

For the case E > U0 (U0 is the energy correspond­
ing to the top of the potential barrier ) we have an 
analogous formula with the replacement (A. 7). 

From (A.12) it can be seen that for E « U0 the 

wave function of the level corresponding to the left 
hand well falls off exponentially towards the in­
terior of the right hand well, since in that case 

cos 2ro2 ~ -1, 

h + cos 2ro2' ~ 1 + a, C "' ± e-K. 

In the case E » U 0 after the replacement (A. 7) has 
been made we shall have h - ( 1 + e20 )1/2. It can 
be see that C R:J ± 1; the sign of C is determined 
in accordance with the rules given in [16]. 
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