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The energy levels of an electron moving in a periodic field of a crystal in the presence of a 
strong electric field are determined. The existence of a band structure, that is, of maximum 
and minimum values of the kinetic energy of the electron, leads to a finite motion in ordinary 
space, and consequently to quantization of the energy levels. The case is considered when 
two bands come close together. It is shown that if allowance is made for transitions from one 
band to the other, the energy levels corresponding to different bands can never cross. 

1. ELECTRON LEVELS IN A CRYSTAL IN AN 
ELECTRIC FIELD 

IN the presence of an external electric field, the 
electron levels can be obtained by solving the 
corresponding Schrodinger equation 

(Ho- eEr)'IJ = e'IJ, (1) 

where H0 is the Hamiltonian of the electron in the 
periodic field of the crystal and E is the electric 
field intensity vector. It is more convenient, how
ever, to go over to momentum space. To this end 
we expand 1/J(r) in powers of the wave functions of 
the electron in the crystal 

'iJ (r) = L; ~ dpeipr Un (p, r) Cn (p). (2) 
n 

Here n is the number of the energy band, while the 
remaining notation is standard. Substituting (2) in 
(1), we obtain the following expression for the func
tions cn(p): 

. liE den E~' 
BnCn ,.....- ze d-e LJ lnmCm = ECn. (3) 

p m 

In the derivation of (3) we took account of the 
fact that in the crystal the operator r has matrix 
elements corresponding to interband transitions 
(but with the same value of p), and the intraband 
operator r =in a jap. It is obvious that not too 
strong an electric field (the exact condition will be 
formulated later) leads to exponentially small 
probabilities of the transition from one phase to 
another, that is, in first approximation we can dis
card in (3) the term with rnm. On the other hand, 
if we nonetheless take into account such transitions, 

then this will be done only between bands separated 
by a minimum energy gap. 

We shall henceforth assume that there exist two 
bands, the gap between which is considerably 
smaller than the energy gaps between these bands 
and the remaining bands. Only these bands will be 
taken into account in Eq. (3), which we shall solve 
by quasiclassical methods. The system of equa
tions now takes the form 

EtC! - ie1iEdc1 I dpx - eEx12C2 = ECt, 

E2C2- ieliEdc2 I Bpx- eEx21C1 = ec2, (4) 

(we choose the direction of E as the x axis.) 
It is convenient to introduce new functions a 1, 2 

such that 

{ i Pfx ( Et + 82 ) 1 } 
Ct, 2 = exp """i"!iE .) , E - --2- dpx a1, 2. (5) 

Then for a 1, 2 we obtain 

1l2 ( Et - E2) a1 - ieliEda1 I dpx - eEx12a2 = 0, 

1I2(E1- e2)a2 + ieliEda2 I dpx + eEx21a1 = 0. (6) 

It is easy to verify with the aid of (6) that the 
solutions a 1, 2 have the following property: 

I a1 12 + I a2l 2 = con st. ( 7) 

The term in (6), describing the interband transi
tions, is small everywhere, except at the point in 
the complex plane Px• where E1(pk0l) = E 2 (p~0 l). 
Therefore we can neglect this term near the ground 
state, and we obtain 

Px 

a1,2=At,2exp{ + Ze~E~ (e1-e2)dpx'}. ( 8) 
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Moving along the real axis, we have both to the 
left and to the right of the singular point solutions 
of the type ( 8), but with different coefficients. It 
follows from (7) that in this case the coefficients 
on the left and on the right are connected by means 
of the unitary matrix 

U=(~ ~). (9) 

and a and 6 are obviously the transmission coeffi
cients of the waves a1,2 respectively, that is, 
lal = 161 =Dis the transmission coefficient 
(D < 1), and inasmuch as the phases of a and 6 
are determined essentially by the phase in (8), we 
have on going from p~0 to p~2 l 

p.,<•l 

a = D exp{- 2 ~E ~ ( 81- 82) dpx'}, 
e p.,<•l 

p.,(2) 

b = D exp{ 2e~E P~~}8t- 82)dpx' }. (10) 

In addition, it follows from the property of unitary 
matrices that 

From this we obtain the eigenvalues of the matrix 
u 

/..1, 2 = D cos <p + i ( 1 - D2 cos2 <p) 'I•, ( 12) 
Px(Z) 

<p = 2 ~E ~ (e1- 82)dpx'. (13) 
e p.,<•l 

We shall henceforth assume that the field is 
directed along one of the. crystallographic axes. 
In this case 

We note that w is the frequency of the classical 
motion. Indeed, dpx/dt = eE or Px = eEt + p 0• The 
period of the motion is determined from the con
dition ~Px = eET = Pxo• from which follows 
w = 27reE/Pxo· 

We see from (15) that the energy levels will be 
completely determined if we know the coefficient 
D. Before we find D, let us investigate the general 
properties of (15). We first put D = 1, that is, we 
do not take into account the inter band transitions. 
Then lj; = cp 0 and we obtain 

Po:o 
;1 r 

8 =!iron+- J 8t,zdpx', 
Pxo 0 

(1 7) 

i.e., a system of equidistant levels, corresponding 
to the first and second bands, shifted by an amount 

Po:o 

..i_ ~· (8t- 82)dpx' = 81-82. 
Pxo 0 

The existence of such a quantization of the elec
tron levels in the lattice, in the presence of an 
electric field, was first indicated in [1]. 

At some value of E it may turn out that 
€1 - €2 = nwk, where k is some number. This 
means crossing of levels of different bands, since 
the level of one band with given n corresponds to 
the same value of the energy of a different band, 
but shifted in number. If we now turn to the exact 
expressions for the levels, we find that the ener
gies of both bands differ by an amount n w lj; /1r. It 
is clear from the expression for lj; that when D = 1 
we actually can make lj; = k7r (in this case lj; = cp 0), 

which is just what we designate as level crossing. 
On the other hand, if we assume that D < 1, then lj; 

is never equal to k1r. More accurately, I cos lj; I ::::; D 
and when cos lj; =- D we have 

1jl = kn + (1 - D2) 'I• = kn + R. 

{ i Pro ( e1 + ez ) '} = A1,2, Ct,2 (Px) exp eliE J0 8 - - 2-- dpx , 
Therefore the minimum distance between the en

(14) ergy levels is 

where Pxo is the component of the reciprocal
lattice vector along the x axis, and p~2l- p0 l = Pxo· 
The periodicity condition c1, 2(Px + Px0) = c1, 2(Px) 
then leads, with account of (14) and (12), to the 
relation 

Pxo 

8 = -2
1 ~ (81 + 82)px' + liro (n ± 2"' ) (15) 
Pxo 0 n 

where n is an arbitrary integer (positive or nega
tive) 

ro = 2neE I Px., 1jl = arc cos (D cos <po), 
Pxo 

<po = 2e~E ~ (81- 8z}dpx'. (16) 

liroR In, (18) 

The value of R is obviously the coefficient of tran
sition from one band to the other (R « 1). 

We now proceed to calculate D and R, i.e., to 
solve the system (6). To this end, it is necessary 
to find the dependence of x12(x21 ) on Px· Since the 
origin from which Px is measured is immaterial, 
we place it at the point where E 1 - E 2 is minimal 
and equal to ~- If we use perturbation theory in 
the vicinity of Px = 0 and take only the two bands in 
question into account, then 

81,2 = 112[ et(O) + ez (0)] 

(19) 
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where pg) is the matrix element of the momentum 
operator between the states with Px = 0. 

It is further obvious that x12 = p12/im(E1- E2), 
and we must relate p 12 with pgl. However, in sec
ond order perturbation theory, we have 

1 82et 1 I P12l 2 

-2- 8px2 - m2 ft- 1:2 • 

Substituting here (19) and using the connection be
tween x12 and p12, we obtain finally 

X12 = f1p~2(Q_L [ 112 + _4Px2 1 P12 (0) 12 J-i. 
lm m2 

(20) 

Generally speaking p 12(0) can have a certain 
phase, but it is clear from the form of (6) that by 
redesignating a1,2 we can readily get rid of it. 
Therefore we shall henceforth take p12(0) to be a 
real quantity. It is also natural to introduce the 
notation 

(2m*)'"' 

mf12 11'" (2m*)'lz 
J.t= =---

2eEiip12 (0) 2eliE 

(then m* is the effective mass near the gap). Sub
stituting all this in (6) we have after elementary 

transformations 

da1 i~-t , 1 a2 
-+-(1 +1:2) ha1----=0. 
d,; 2 2 1 + ,;2 

da2 i~-t , 1 a1 
---(1 +1:2 ) lza2+---= 0. (21) 
d,; 2 2 1 + ,;2 

The system (21) coincides with that which arises 
in the theory of inelastic collisions and has been 
solved in a paper by one of the authors and 
Chaplik[ 2], where it was found that 

{ :nf1'iz(2m*)'/, } 
R = (1- D2)'/z = e-n~t/2 = exp - . (22) 

2eliE 

This solves completely the problem of finding the 
energy levels. 

We note that the results obtained in the present 
paper can apparently be used in semiconductor 
theory. 
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