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The dependence of the spin-lattice relaxation time on the frequency of an alternating external 
field is investigated in paramagnetic crystals, using the diagram technique developed for an 
arbitrary approximation to an external perturbation. The dependence leads to a high­
frequency "cut-off" of the absorption line. The line shape near the resonant frequency is 
affected only if the main contribution to relaxation is due to single-phonon processes. Some 
effects not accounted for by the linear theory are also considered. 

THE phenomenological Bloch equations[ 1] are 
widely used to describe the variation of the mag­
netization of a paramagnetic substance with time 
in an alternating external field. In these equations, 
relaxation effects are taken into account by means 
of two constant time parameters, T 1 and T2• The 
stationary solutions in the case of an oscillating 
field perpendicular to the de field indicate the 
presence of a resonant absorption of energy from 
the alternating field. The intensity of the absorp­
tion as a function of the frequency of the external 
field is a Lorentz function, and the width of the 
corresponding curve is determined by the param­
eters T 1 and T2• It is clear, however, that the 
alternating external field should have some effect 
on the relaxation processes in the system, and one 
would expect the parameters T 1 and T 2 to be, 
generally speaking, functions of the frequency and 
amplitude of this field. In a recent paper[ 2] 

Argyres and Kelley paid particular attention to 
this fact and its result, namely, that the shape of 
the absorption line will be non-Lorentzian. It 
would be interesting to find out just how great the 
theoretically predicted deviations from the 
Lorentzian shape would be in the case of any real 
model. 

Absorption lines that are nearly Lorentzian in 
shape are observed when the dipole-dipole inter­
actions in the paramagnetic substance can bene­
glected either because of a low concentration of 
paramagnetic centers or because these inter­
actions are averaged out in motion. Hence an 
appropriate model for study is a collection of 
identical independent spins that are interacting 
with a surrounding thermal reservoir. We shall 
treat the crystal lattice as this reservoir. 

For the calculations we shall use a diagram 

method, which we formulate following Konstantinov 
and Perel', [ 3] but for an arbitrary order in the 
external perturbation rather than being limited to 
the linear approximation. Besides the possibility 
of a relatively easy extension beyond the linear 
theory, this technique, compared to the usual 
Green function method, has the further advantage 
that by means of it relaxation processes of arbi­
trary order are easily taken into account. The 
first section of this paper outlines the method. In 
the second section we carry out a calculation of 
the susceptibility of the system in the oscillating 
external field, and in the third section we discuss 
the results obtained. 

1. DIAGRAM TECHNIQUE FOR CALCULATING 
THE EFFECTS OF AN ARBITRARY ORDER 
IN THE EXTERNAL PERTURBATION 

Let ::It= ::Je0 + V be the Hamiltonian of the system 
in the absence of the alternating field, and Je' ( t) 
= - AH ( t) be the Hamiltonian of the interaction of 
the system with the field, described by a tensor 
H ( t) and being turned on adiabatically at time 
t = -oo. Solving the equation for the density 
matrix of the system 

i ap = [::Je + ::Je' (t), p] at 
by successive approximations, we find the correc­
tions to the unperturbed density matrix ( cf. [ 4J ) : 

Po = exp ( -~::Je) I Sp exp ( -~::Je), ~ = (kT)-1, 

t t, 1•-1 

.1hp = ( + ridt1Ldt2 .. ~~ dth exp(- i::Jet)[::ftt.'[3tt,' 

. .. [Je t 1/, po] ... ]] exp (i::Jet). (1) 
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Here 

::Jet'= exp (i::Jtt)::Jt'(t) exp (-i,1et). 

Now the correction of k-th order in the external 
perturbation for an arbitrary physical quantity B 
pertaining to the system can be written in the form 

!'J."B = Sp /'J."p ·B. 

Writing out the commutators in the trace and 
using the identity 

exp {- i::Jt ( z1 - z2)} 

1 •• 
= exp{- i::Jtoz1} [ T L exp ( T ~ V,dz) J exp{i.o/t' 0z2}, (2) 

Zz 

we obtain 

t tA-t 

X (Sp exp(~~3t})-1 ~ ... ~ Sp{ exp(-~::Jto) 
-oo -oo 

X Tc[ exp(} ~ V,dz) 3!/ ... ::Jt"'Bo]}dti ... dt" +c.c. 
c (ru 

In (2) the integral is taken over a contour L 
drawn in arbitrary fashion in the complex "time" 
plane from z 2 to z 1. The operators following the 
symbol T c should be ordered on the contour C, 
i.e., they are arranged from left to right on this 
contour in order of the increase in their "times." 
The contours C that correspond to the different 
terms in (3) are conveniently drawn such that they 
consist of a vertical part ti + if3 - ti ( ti = t, 
t1, ... , tk-1 ), appearing at the beginning of the con­
tour, and upper and lower horizontal parts. 

The upper horizontal part divides into two-the 
left ti - tk, which is the continuation of the con­
tour, and the right, which appears at the end of the 
contour and ends at the "terminal" ti. The verti­
cal and left upper horizontal parts of the contour 
do not contain terminals ( the moments of time at 
which the system exchanges energy with the ex­
ternal field); the right part contains the terminal 
ti as well as an arbitrary selection of terminals 
t1, ... , ti-1; the remaining terminals lie in the 
lower horizontal part. All possible contours C 
for the case k = 3 are shown in Fig. 1. 

In Eq. (3), s equals the number of terminals in 
the upper horizontal portion of the contour, and 
all operators are written in the interaction repre­
sentation with unperturbed Hamiltonian ::Jt 0: 

V, = exp (i.o/t'oZ) V exp ( -i::Jt0z), 

::Jt "' = exp ( i::Jtotk) ::Jt' ( t")·exp ( -i.o/t' otk). 

Expanding now the T-exponent in Eq. (3), we repre-

sent ~kB in the form of a series: 
00 00 

D.nB(t)= ~ ~ ~ ... ~ H(w!) .... H(wn)Gcn(w 1, ••• , wh)dw1 

C n -oo 

... dw" + c.c. 

= ( -1)•+" ( + r+" (Sp exp (- ~::Jt))-1 ~ e•1t1 dt1 

-00 

00 

... ~ eshthdt"~ dz1 ... ~ dznSp{exp(- ~::Jto) 
c c 

(4) 

Here Si = iwi + u, where u is a positive, infinitely 
small quantity. 

We shall in what follows consider a system of 
identical paramagnetic ions interacting with the 
vibrations of the crystalline lattice (the phonon 
field) in which they are imbedded. Let us apply 
an alternating magnetic field H ( t) to the system 
and inquire after the behavior of the magnetization 
M. We have then 

where y is the gyromagnetic ratio, and the index 
i numbers the individual ions ( spins), ::Jtz is the 
Hamiltonian of the lattice (equal to the sum of the 
energies of the individual normal vibrations), and 
vi is the Hamiltonian of the interaction of the i-th 
spin with the lattice, which we write in the form 

q, v 

The operator Fqv ( si) acts only on states of the 
i-th spin, bqv• and bqv are the creation and anni­
hilation operators of a phonon with wave vector q 
and polarization v, and ri is the radius-vector 
of the i-th spin. Writing down the Hamiltonian 
for the perturbation in this form means that only 
a single-frequency mechanism of spin-lattice 
interaction (the Kronig-Van Vleck mechanism[5J) 
is being considered. But then, this assumption is 
not a very strong limitation on the theory and is 
necessary only to make the model concrete. 

The trace in Eq. (4), after substitution into it of 
.1f 0 and V decomposes into a product of spin and 
lattice parts. It is convenient to display the de­
pendence of this trace on time in explicit form by 

FIG. 1. 
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using a representation in which :Je 0 is diagonal, 
and to represent the integrals over z 1, ••• , Zn as 
sums of integrals with a different arrangement of 
the times z on the contour of integration C rela­
tive to the terminals and relative to each other, 
which permits the successive integration over the 
times z z and ti to be carried out ( cf. [ 3] ) • (We 
shall call the points representing the times z on 
the contour "vertices.") Further, the lattice part 
of the trace is expanded by Wick's theorem, [s] as 
a result of which it is resolved into a sum of all 
possible product pairs of the type 

each of which can be correlated with a line 
directed from the point z 1 of the appropriate con­
tour to the point z 2• We shall call the phonon line 
"regular" if z 1 precedes z 2 on the contour; other­
wise we call the line "irregular." [ 3] The spin 
part of the trace decomposes into a product of the 
traces from the operators that pertain to the indi­
vidual spins. We stipulate that lines joining the 
appropriate points correspond to the spin states 
in one or another "time" interval on the contour. 
The lines pertaining to the same spin form a cycle, 
and all lines of the cycle, with the exception of 
one-that joining the "latest" point of the cycle 
with the "earliest" one-are regular. By p 00 

above we mean the quantity 

exp ( -~:Jeo) / Sp exp ( -~:Jeo). 

We shall construct further horizontal and vertical 
sections between every two neighboring points 
plotted on the contour. 

As a result we obtain that G~ is written as a 

sum of all possible terms, to each of which corre­
sponds a graph-the contour C with its k termi­
nals and n vertices, the spin and phonon lines, the 
vertical and horizontal sections. To the elements 
of the graph correspond factors of the analytical 
expressions according to the following rules: 

1. To each vertex corresponds a factor 
[ Fqv ( si) lmn• where the subscripts q and v per­
tain to a phonon arriving at the vertex, and the 
subscripts m and n to the spin states entering 
and leaving the vertex. To each terminal corre­
sponds a factor of the form yS~n· In addition, to 

each vertex in the lower horizontal portion there 
corresponds the factor - i, in the upper the factor 
i, and in the vertical part the factor -1; to each 
terminal in the lower horizontal portion (apart 
from t) corresponds the factor i, in the lower 
the factor - i. The factor corresponding to the 
terminal t is exp [ ( s 1 + ... + Sk)t ]. 

2. To each vertical section corresponds the 
l 

factor (I:; Si + iwab)-1 , where Wab is the differ-

ence in the energies of the lines entering the area 
to the right of the section and leaving it, and l is 
the number of terminals to the left of the section. 
To each horizontal section corresponds the factor 
( p + Wab)-1, where Wab is the difference in the 
energies of lines entering the area below the sec­
tion and leaving it. 

3. To each regular phonon line corresponds the 
factor ( 1 + nqv) exp ( iq · rij), to an irregular line, 
nqv exp ( iq • rij). Here llqv = Sp ( p 00bqvbqv); i ( j) 

is the number of the spin with which a phonon 
interacts and is annihilated ( created); rij = ri 
- rj. In addition, to each irregular spin line cor­
responds the Boltzmann factor 

where m is the quantum number of the state de­
scribed by this line. 

The summation is carried out over the repeated 
indices, and to obtain G~ it is necessary to carry 

out an inverse Laplace transformation from the 
variable p to (3. 

Although in formulating this technique the rela­
tive magnitudes of I ie0 j, IV j, j.1£' I do not play a 
role, the method acquires real value for IV j, 
I :Je' I « I :Je 0 j. Henceforth we shall assume that 
these conditions are fulfilled. 

2. CALCULATION OF THE SHAPE OF THE 
ABSORPTION LINE OF A PARAMAGNETIC 
SUBSTANCE 

Now let the alternating magnetic field be 
periodic and directed along the x axis: 

H(t) =iHcoswt, H(w') = 1/ 2H[6(w'-w) +6(w'+w)]. 

Representing the correction to the magnetization 
Mx in the form 

llM X ( t) = x' ( (jJ) H cos wt + x" ( (jJ) H sin wt + ... ' 

we find that only graphs with an even number of 
terminals contribute to x" ( w). 

It is convenient to modify the correspondence 
rule so that it is possible to write down directly 
an expression for x ". For this, it is sufficient to 
place the factor % ( H/2 )k- 1 ( ± i) in correspondence 
with the terminal t instead of the factor 
exp [ ( s 1 + ... + Sk) t), and to agree to choose only 
those graphs for which 1,; sz = ± iw + u, whereby the 
sign in front of iw in the last expression also de­
termines the sign of the added factor. In particu-
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lar, in the linear approximation and without taking 
the internal interactions in the system into account, 
we have 

x/' (ro) = :3 lmnb(ro- romn), 
m,n 

(6) 

where N is the number of spins. 
We return to the calculation of x" ( w) in the 

presence of the spin-lattice interaction. Here we 
shall not consider interactions of the spins via the 
phonon field, which will permit us to do the prob­
lem of a single particle and take into account dia­
grams with only one spin cycle. 

Diagrams with a different number of vertices 
in the vertical part correspond to terms of the 
power series in IV 1/kT and IV 1/13£0 I of the 
perturbation theory. Without any essential loss 
of generality of the considered problem, we can 
set I V I « kT, and, considering further that 1 VI 
« I Jeo I, we limit ourselves to investigating dia­
grams without vertices in their vertical parts. 
Actually, this is equivalent to the approximation 

Po ~ Poo· 
When the frequency of the external field ap­

proaches one of the intervals between the spin 
levels Wnm• the quantity ( s + iwmn>-1 increases 
without limit. Hence it is necessary for us to sum 
up the diagrams with an arbitrary number of iden­
tical ''resonant'' denominators of the type 
( s + iwmn)-1, which are obtained when only two 
spin lines pass through the vertical section. 

As a preliminary step, we carry out a partial 
summation of diagrams differing from each other 
only in the number of" irreducible" parts between 
two neighboring terminals. A part of the graph 
that is bounded by two resonant sections and does 
not contain within itself any other such sections 
and terminals, is called irreducible. [ 3] We shall 
represent the sum of all possible irreducible parts 
in the graph as a square; then the aforementioned 
partial summation is pictured graphically as in 
Fig. 2. As a result, we obtain that the calculation 
of the spin-lattice interaction leads simply to a re­
placement of the denominator ( s + iwmn>-1 by 

(s+ iromn + rnm)-i = Snm-1, 

where r nm ( s) is an analytical expression corre-

~+·~+~+ 
~ 1L-Jt ~ ... 

FIG. 2. 

sponding to the sum of the irreducible parts. 
We now assume that the spin levels are not 

equidistant, and the spectrum consists of well­
resolved lines. In other words, the conditions 
I wo - wo I » IV I, where w0 and w0 are the dif­
ferent frequencies of the spin system, should be 
fulfilled. Then it turns out to be possible to 
neglect diagrams that contain simultaneously the 
factors ( s - w0 )-1 and ( s - w0)-1• Actually, for 
example, the contribution of a diagram with a 
factor [ ( s - w0 ) ( s - w0) t 1 compared to the con­
tribution of a diagram to which corresponds a 
factor (s- Wo)-2, is Of order (w- Wo)/( W- wo); 
in the limits of the line width at frequency wo 
this is less than I vI/( wo - wo). In a similar 
fashion it is possible to show that it is sufficient 
to consider only diagrams in which the phonon 
lines join vertices only between pairs of neigh­
boring terminals. As a result, it turns out to be 
possible to make use of ''skeleton'' diagrams, in 
which only terminals and spin lines are plotted; 
to each vertical section of such a diagram will 
correspond a factor of the type s-;_1m. 

Let us consider diagrams of the third order. 
The analytical expression for x" corresponding 
to them is the following: 

xa" ( ro) = m~ ( I:n Re s~n )( - I yH ~S:~;"n 12 ) Re S~n 

+ ~ { ( yH ) 2R 1 ( 1 1 ) 
m, n, h 2 e (2s)mh Smn- Snh 

X [- lmn I (Sxhnl 2 -
1- + lnh I (Sx)mni 2 - 1-J 

n Smn n Snh 

r mn' = 2rmmrnn I (r mm + r nn). (7) 

In obtaining Eq. ( 7), we took into account the 
equality rmn(s) = r1'un<s*), which is easily ob­
tained by a comparison of the corresponding 
diagrams. 

In the region of resonant frequencies, the 
greatest contribution to x3 is given, obviously, 
by the first sum. The same situation also occurs 
for the higher order corrections, and, taking only 
such contributions into account, we obtain as a 
result the summation 

x"(ro) 

_ :3 lmn Tnm(ro) 

- m, n n 1 + (ro- romn') 2Tnm2 (ro) + y2H2T nm(ro) Tnm' ; 
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Wmn 1 = Wmn- lm fnm(ro) (8) 

( T' is independent of frequency). A similar ex­
pression is obtained also when the spin has equi­
distant levels; hence we shall not give this case 
any special consideration. 

3. DISCUSSION OF RESULTS 

First we shall make the following observation 
concerning the terms that were discarded in ob­
taining x 11 ( w). The first two members of the 
triple sum in (7) show that in third order with 
respect to the alternating field there arise addi­
tional resonance lines at frequencies that are half­
sums of the fundamental frequencies (see, for 
example, [ 5] ) . In the vicinity of resonance this 
contribution to x 11 has the form 

2fnm (yH) 2 

m,n,k (2m- Wmh)2 + f mh2 :rt(Wmn- Wnn) 2 

(9) 

The following terms in the triple sum in (7) can 
turn out to be important at low temperatures. 
Consider a three-level system (non-equidistant, 
Fig. 3). In the linear approximation the absorp­
tion at frequency wmn at low temperatures can be 
very small on account of the low population of 
levels m and n. In the third approximation 
this absorption will be determined by the popula­
tion of the lower level. The ratio of the intensities 
of absorption in the third and first orders is found 
to be equal to 

la lvH(Sx)nnl 2 fnh nn-nn 

J;- (Wmn- Wnn) 2 2fnn nn- nm" 
(10) 

It follows from this that in some cases the reso­
nance effect for the upper levels, which vanishes 
as the temperature is lowered, can be evoked 
anew by increasing the radio-frequency field. 
For example, when Wmn ::::< 1 cm-1, T ::::< 0.1° K, 
I Wmn - Wnk I ::::< 10 Oe, H ::::< 0.1 Oe, the ratio 
J 3 /J1 ::::< 3. It is seen that rather exceptional con­
ditions are required to observe the effect. 

We note further that Eq. (8) corresponds to the 
solution of the unmodified Bloch equations (see 
[t] ), namely, x" goes to zero if the spin levels 

------m 
------n 

------~ 
FIG. 3. 

are not split in the absence of the alternating 
field. This is because we used the approximation 
p0 ::::< POO• which is valid only for IV I « I :Jt o 1. 
Basically, Eq. (8) differs from the solution to the 
Bloch equations in that the quantity Tnm turns out 
to be independent of frequency. Graphs with dif­
fering numbers of vertices determining r nm ( w) 

correspond to relaxation processes with partici­
pation of one, two, or more phonons. 

At sufficiently low temperatures, single-phonon 
processes constitute the main contribution. The 
corresponding expression for r mn ( s) can be ob­
tained from the diagram equation shown in Fig. 4. 

0 =+' q m-+~+$qm+~ n nl n n'-'n~ 

lj 

FIG. 4. 

Replacing the summation over the wave vectors of 
the phonons by an integration, we obtain for the 
real part the expression 

Re r mn(ro) = :n: ~ { ~ [ < (1 + nq) 1Fmd 2P> I "'q=-W-Wnz 
v l 

+<nq1Fmd 2P> I"' =w+w +< (1 + nq) 1Fnd 2P> I"' =w+w 
q nl q lm 

+<nq 1Fnzi 2P) I wq=-w-w1J 
(11) 

Here p is the distribution function for the lattice 
vibrations, and the brackets ( ... ) indicate inte­
gration over the directions of the phonons of a 
given frequency. 

At resonance ( w ::::< Wmnl, Eq. (11) is the sum 
of relaxation transition probabilities from levels 
m and n to all the others. Thus, the usual 
quantum mechanical interpretation of the param­
eters r mn ( Tmn> is valid only in the vicinity of 
the resonance frequency. At high frequencies 
( w > Wlim) the distribution function p is equal to 
zero, and rmn- 0. Thereby, from the high­
frequency side the line appears to be cut-off in a 
natural way. 

Let us consider in somewhat more detail the 
frequency dependence of r mn for a two-level 
system, assuming for simplicity that the Debye 
model of lattice vibrations is valid. We single out 
in Eq. ( 11) in an explicit way the dependence on 
wq, by considering that 

pqv ~ Wq2 (wq < ffilim), nq = (e~"'q -1)-1, F q• ~ ,ffiq 1
;, 

(see, for example, [ 7] ) : 
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w w38 ( w lim - w) 
Re rmn(w) = (Amn + BmneB ) ~ . (12) 

e "'-1 

Here e is a unitary discontinuous function. Once 
again we emphasize that in the phenomenological 
theory the parameter r mn is regarded as a con­
stant, and its quantum mechanical calculation by 
perturbation theory is carried out according to 
Eq. (11) or (12), with the assumption that 

w = Wmn· 

We now point out some other consequences of 
the dependence of the relaxation term r on fre­
quency. The function x" ( w) turns out to be dif­
ferent from Lorentzian in all frequency regions 
and is asymmetric. The half-width of the reso­
nance line is: 

where (.C:.wmn>o = Re rmn ( wmn) is the half­
width of a Lorentzian line. From this it is clear 
that the strongest departure from the Lorentzian 
shape should be observed in the case of wide lines. 

For spin-lattice relaxation processes of higher 
order, the frequency dependence of rmn is found 
to be more weakly expressed and will be important 
only at very high frequencies, so that at high tem­
peratures, when single-phonon processes play an 
insignificant role, the observed part of the line 
will be practically purely Lorentzian. For relax­
ation processes with the participation of any num­
ber of phonons, however, the limitation of the 
spectrum of lattice vibrations will lead to a cutoff 
of the line at sufficiently high frequencies. Of 
course, the sudden drop of the function x" ( w) at 
these or other frequencies is associated with the 

Debye model of lattice vibrations. Actually, by the 
term ''cut-off'' one should understand a transition 
to a region of frequencies where the function be­
gins to diminish very much faster. The shift in 
the resonance lines caused by the spin-lattice 
interaction also depends very weakly on frequency. 

The author expresses his sincere gratitude to 
S. A. Al'tshuler and A. I. Burshte!n for a valuable 
discussion. 
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