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The integral cross section for photon emission in electron-positron pair annihilation into a 
pair of scalar particles is calculated by a method previously proposed by the authors. An 
analysis of the photon emission cross section for annihilation of an electron-positron pair 
into a pair of any two particles is carried out by taking into account the form factors. The 
cross section for emission by electrons is calculated exactly, whereas in the cross section 
for emission by the final particles the first two terms of the expansion in powers of w/E 
are calculated. The Low method is used to evaluate the second expansion term. The inter
ference term vanishes in all the cross sections considered. 

1. INTRODUCTION 

IN an earlier paper[t] the authors proposed a 
simple method of calculating the integral cross 
section for the radiation of a photon with arbitrary 
energy occurring when an electron-positron pair 
annihilates into a pair of other particles. The 
idea of the method consists in integrating the indi
vidual parts of the diagrams, making extensive use 
of the relativistic, gauge, and charge invariance 
properties. This method was used to calculate the 
integral cross section for the emission of a photon 
when a muon pair is produced in an electron
positron collision. 

We calculate in the present paper the photon 
emission cross sections for several annihilation 
processes. We consider the emission accompany
ing the production of a pair of scalar particles 
upon annihilation of an electron-positron pair 
(Sec. 2). To take into account the influence of the 
strong interactions on the process of emission by 
the initial particles, it is sufficiently simple to 
introduce the form factors of the final particles. 
If the summation is carried out over the spins of 
the final particles, then it becomes possible, [2] 

as a result of relativistic, charge, and gauge in
variance properties, to write down a universal 
formula for the integral cross section of emission 
by the initial particles, containing two functions 
that depend on the form factors (Sec. 3). 

To take into account the influence of strong 
interactions on the process of emission by the 
final particles, it is necessary to know the con-

tributions of the diagrams of the Compton type 
(two final-particle lines and two photon lines, of 
which one is virtual). To this end one can either 
introduce phenomenological form factors of the 
four-point diagram, or else use dynamic models, 
or finally, expand the amplitude of the four-point 
diagram in powers of w/E. Nothing is known at 
present concerning the indicated form factors for 
four-point diagrams, and an analysis, for example, 
within the framework of the dispersion approach, 
is a rather complicated independent problem and 
will not be presented below. At the same time, a 
rather large amount of information can be obtained 
by expanding the amplitude of emission of a photon 
by the final particles in powers of w/E. It turns 
out that the zero-order term of the expansion is 
given by the classical current approximation, for 
which we can also write out a universal formula. 
To obtain the next term of the expansion, we used 
the method of Low, [a] and the expansion itself is 
carried out as an example for the emission pro
duced when a pair of pions is created (Sec. 4). It 
can also be carried out in similar fashion for the 
radiation accompanying the production of any 
particle pair. 

2. CROSS SECTION FOR EMISSION UPON 
PRODUCTION OF A PAIR OF SCALAR 
PARTICLES 

The emission of a photon when a pair of scalar 
particles is produced in an electron-positron col
lision is represented by five diagrams (Fig. 1). 
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The matrix element of the process is of the form 1> 

il1 = A[L1-2v(pz+)Lt"U(Pt)Pv + A-2v(pz+)y"u(pt)Sv], 

(2.1) 

where 

P = P•- pa+, 11 = P• + Pa+, A = Pt + pz+; 

( ep, epa+) ( ep, epa+ ) 
Sv= -,+- Pv+ --- kv-2ev. (2.3) 

\ 1'] 'I] . 'I]' 'I] 

After averaging over the spins of the electrons 
and summing over the polarizations of the photons, 
we obtain 

(2.4) 

Here 

Tvv' =- ~ SvSv' = 4gvv, + ';2PvPv' + (,2kvkv, (2.5) 

+(';(,) (Pvkv' +Pv,kv)- 2(';vPv' + ';v'Pv + svkv' + Sv'kv), 

Sv = P4v _ Pav+ (2.6) 
'I]' 'I] ' 

where the summation is over the photon polariza
tion. 

The cross section of the investigated process 
is conveniently written, as before, in the form 

FIG. 1 

' Owing to gauge invariance of M~v the contribu-
tion to ( 2. 8) is made only by the contraction with 
the tensor g;;v'· Carrying out this contraction and 
integrating trivially over the azimuthal angle of the 
photon emission, we obtain the differential cross 
section with respect to the angle between the direc
tions of the initial electron and the photon in the 
c.m.s. of the initial particles: 

d2a.(E, w, 'frk) = aaw _1_( 112- 4J..L2 )'1'z, 
d ( CIOS {}11 ) dw 24£2~ ,12 ,12 

(2.10) 

z = m2(,12 +2m2) ( !__ + ~) +2m2(!__-!__) 
x2 x'2 x' x 

+ 2 ( .1-G + x') + -~(E2,12 + m 2(Ew- m2)]. 
x' x xx' 

(2.11) 

Integrating over the angle J.k, we get 

dae =-aa_ dw .!_( ~2- 4J..L2 )'/, y 
6E2 ~ w f'..2 N ' 

(2.12) 

y = (L- 1) (,12 + 2w2) + m2 [ L( ~~- ;: ) - 2 J, (2.13) 

1 1 + ~ L=--ln--
~ 1- ~· 

Integrating over t9-k, we get 

a3 d3k 
d - \ ]vv'W 
as- 4(2n) 2 jFj J wN e w', 

(2.14) 

(2.15) 

(2.16) 

(2. 7) If we recognize that the tensor Tvv' satisfies 

where dae is a contribution in which the photon is 
emitted by the initial particles, das -the contribu
tion in which the photon is emitted by the final 
particles, daes-interference term. Let us con
sider the cross section 

l)Here and below we use the same notation as in the pre
vious article[• J. 

the condition 

then the general expression for W vv' can be 
represented in the form 

Wvv' = htgvv' + (:~) 2 (hi+ AZhz)kvkv' 

h1 + AZhz + hzAvAv' - kA ( kvAv' + kv,Av). 

(2.17) 

(2.18) 

To calculate the functions h 1 and h2 it is suffi
cient to contract the tensor W vv' with the tensors 
g""' and kvkv', and calculate the integrals ob
tained from (2 .16); this is the simplest to do in 
the c.m.s. of the two final particles. In the c.m.s. 
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(2.19) 

(2.20) 

Substituting the obtained values in (2.15), we 
readily get the differential cross section with re
spect to the angle between the directions of the 
initial electron and the photon for the contribution 
of the scalar particles: 

dl-a.(E, ro, -&,.) _ a3ro [h ( 1 + m2 ) 

d (cos tt,.) dw - - 64:rtE~f3 1 2E3 

xx' l 
+ 2E2w2 (hi+ A2h2) _, . (2.21) 

Integrating (2.21) over the photon emission angle, 
we get 

= ~ dw ( !12- 4!12_ )'''( 1 m2 ) 
da. 24E~f3 m !12 + 2E2 

x{[(!12 - 2112)L1 - !12]( 1- ;:) + 4wz }. (2. 22) 

In calculating the contribution of the interference 
term we encounter the integral 

(2.23) 

Following the substitution p;j __.. p4, the integrand 
reverses sign, so that 

Ovv, = 0. (2.24) 

We see that the contribution of the interference 
term in the case of the production of a pair of 
scalar particles, as in the case of production of 
a muon pair, [ 1] vanishes. Thus, the total differ
ential cross section is 

dl-cr dl-ae , dl-cr. 
--- =-- -;-
d (cos-&,) dw d (cos -tl',) dw d (cos tt,) dw 

(2.25) 

and is given by formulas (2.10) and (2.21). The 
total integral cross section is 

da = dae + da_, (2.26) 

and is given by formulas (2.12) and (2.22). 
There exists still another simple method of ob

taining (2.22), in which the integration is carried 
out simultaneously over all the momenta of the 
final particles (with fixed w). This method is 
presented in the Appendix. 

The expression (2.26) obtained for da is exact. 
We now consider the behavior of the cross sections 
in various limiting cases. Near the threshold we 
have ~-t 2/E2 ""' 1 and w/E « 1; then, expanding up 
to the first-order terms in w/E, we get 

daeth = - aa dw f3o3 [In(~)- _1_ J' 
3E2 w m 2 

(2.27) 

d th = _2a3 dw A a( 1'- _ro )( 1 - _IL~ ) • 
O"s 9E2 (t) pO E E2 ' (2.28) 

near the threshold {3 0 « 1; we see that the cross 
section for emission by heavy particles has near 
the threshold an additional smallness, proportional 
to the square of the velocity of these particles, as 
should be the case, since the emission of heavy 
particles near threshold is of the dipole type. 

Far from the threshold ~-t 2/E 2 « 1; then, accu
rate to terms of first order in ~-t 2/E 2 and w/E, we 
have 

dcre = -~ (1- ~:)[In( 2E)- !_] dw (2.29) 
3E2 2E2 , m. 2 w ' 

dO"s = ~ ( 1- _3 _112 )( 1 - (t) )[In ( 2E)- _1 J dw 
3E2 2 E 2 E 11 2 w· 

(2.30) 

We see that near the threshold the contribution of 
emission from a heavy particle is very small. 
With increasing energy of the initial particles 
over the production threshold, the contribution 
of the emission by the heavy particles increases, 
and when E ""' 2p, we have das ~ 0.1 dae. This 
situation is analogous to that occurring when a 
muon pair is produced. [ 1] As to the hard part of 
the photon spectrum, when w- Wmax we have 

3. CROSS SECTION FOR EMISSION UPON 
CREATION OF A PAIR OF ARBITRARY 
PARTICLES 

The method proposed in [ 1] can be used to cal
culate the cross section of any process in which 
an electron-positron pair is converted into a 
particle-antiparticle pair and a photon. It is 
clear that the contributions of the diagrams in 
which the initial electrons radiate can be calcu
lated in the same manner as in [ 1] (see also Sec. 
2 of the present paper). To describe the vertex of 
the created particles we introduce the matrix 
element for the transition current (p4, Pal J I 0). 
It can be shown [ 2] that it follows from relativistic 
and gauge invariance requirements and from the 
law of current conservation that for particles with 
arbitrary spin the sum over the polarization of the 
final particles can be written in the form 
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= 4E~-J 4Dt(L\2) ( L\~~~- gv.v)- 2Dz(L\2)Pv.Pv J, 
(3.1) 

where D1 and D2 are functions of the form factors 
of the final particles. Thus, for example, for pions 

For nucleons 

D, = 1I2L\2I f!, + gff2! 2, D2 = I ffd 2 - L\2g2! ff2! 2 I 4!!2• 

(3.3) 

Here F(~ 2 ), ff1 (~2 ), and 5'2 (~2 ) are respec
tively the electromagnetic form factors of the pion 
and of the nucleons in the time-like region of mo
mentum transfer. The corresponding expressions 
for vectons are given in [ 2]. 

If we again represent the cross section in the 
form 

(3.4) 

[ cf. (2. 7) ], then to calculate do-e it is sufficient to 
replace the product P 11P 11 1 in (2.9) by 4EaE4Xvv' 
[formula (3.1) ]; we denote the obtained integral by 
U vv'. Then one must substitute in (2. 8) in lieu of 
V vv' the expression 

(3.5) 

If we now calculate the integral in (2.8), we obtain 
the differential cross section with respect to the 
angle of emission of the photon Jk: 

lfla.(E,w,'l't") a3w t 
--~-~-- = ~--~ -

(3.6) 

where Z is given by formula (2.11), and the inte
gral cross section is of the form 

d = 2a3 dw ..!_ ( L\2 - 4!!2 )'"[n _ D2 (L\2 _ 4 2 ) J y 
Ue ~E2 (tl ,:\4 ,:\2 1 6 !! ' 

(3. 7) 

where Y is given by (2.13). 
In calculating the contribution of the radiation 

by the produced particles we should also take into 
account their structure. It is necessary here to 
calculate the contribution of diagrams of the Comp
ton type. As a result we obtain an expression con
taining a certain (spin-dependent) number of 

functions of invariant kinematic parameters. If 
the produced particles are pions, then there are 
three such functions, if they are nucleons, we 
already have 12, etc. At the present time nothing 
is known concerning these functions. We can 
therefore express in terms of these functions only 
the differential cross section, and this approach 
cannot be used to calculate the integral cross 
sections. 

On the other hand, we can use the expansion of 
the indicated amplitudes in powers of w/E. This 
expansion can be used in general in a rather wide 
range above threshold, since in this region, owing 
to the jump in the masses, w/E « 1. Then the 
integral cross section of the process can be repre
sented in the form (see, for example, [a] ) 

dat = Utodw I w + a,,dw + Utzwlw +... (3.8) 

It is easy to see here that the term <rfo is given 
exactly by the classical current approximation in 
the case of annihilation processes. Indeed, by 
definition, the classical currents contain all the 
terms which do not have w in the numerator; on 
the other hand, in annihilation processes, when 
integrating over the angles of emission of the 
final particles, no additional powers of w arise 
[ unlike the case of emission upon scattering, 
where the limits of integration with respect to the 
angles depend on w; thus, ~~in= ( wm2/E 2 ) 2, and 
the exact expression for a-0 cannot be obtained 
from the expression with the classical currents; 
see, for example, [ 4] ]. 

By definition, for the emission of a single 
photon, 

dac1 = Uel 11 a 2 ~ w dw dQk 
f:rt 

X + (3.9) [ Pt P2+ Pa+ P• l" 
(p,k)- (pz+k) (pa+k) - (P•k) J · 

Carrying out integration over the emission angles 
of the photon and of the final particles, we obtain 

dw a3 ( E2 - 112 )'"( m2 \ 
dac~(E, w) = Uto--;- = £1·~ EZ 1 + zE2 ) 

X {n,o- ~ (EZ- !12) n2o}[ 2E2--: !12 L,o- ~1-l d(t)_. 
3 4E 2 2 _ <•J 

(3.10) 

The previously defined functions D and L1 [see 
(2.20), (3.2), and (3.3)] are taken in this formula 
at the point w = 0 (when ~2 = 4E2 ). 

It must also be noted that the interference term 
do-ef (3.4) vanishes, as in all the preceding cases, 
if the amplitude for the emission by the electron is 
taken in exact form, and the amplitude for the emis
sion by the final particles is taken in the classical
current approximation. 
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4. INVESTIGATION OF THE RADIATION BY THE 
FINAL PARTICLES WITH THE AID OF THE 
LOW METHOD 

There exists a general method of calculating the 
first two terms of expansion (3.8) with account of 
strong interaction in all orders. [ 3] We shall con
sider the calculation of the cross section <Tft using 
as an example the radiation produced upon creation 
of a pair of pions. The matrix element for the 
emission of the photon by the final particles can 
be obtained directly from the second term of (2.1), 
in which we replace S11 by T llJJ. eJJ.. The latter 
quantity we break up into two parts: 

(4.1) 

By definition, Tj}JJ. consists of the sum of the con
tributions of all the diagrams, on which the vertex 
with emission of a real photon is connected with the 
remaining part of the diagram by a single pion line 
(Fig. 2); T~JJ. is the contribution of the remaining 

diagrams. We note that as w---.. 0 only the quan
tity TtJJ. diverges, while T~JJ. remains finite. [3] 

A 

_.,.~f<. 
a 

FIG. 2 

For TtJJ. we have the following expression: 

where ~ and r 11 are exact renormalized propaga
tion functions and the electromagnetic vertex oper
ator of the pion. 

Since we are interested in the emission of soft 
photons, we shall expand the quantities in (4.2) in 
powers of k and retain only the first two terms. 
Using the generalized Ward identity, we can easily 
show[3] that 

(4.3) 

The operator r 11 can obviously be represented 
in the form 

fv(A2, pa+2, (p4 + k) 2) = (pa+ + P4 + k)v!pi 

+ (P4 + k - Pa+}v!p2, 

fv (A2, (pa+ + k)2, P42) = (pa+ + P4 + k)v~ 

+ (p4 - k - pa+).vq;2, (4.4) 

where cpk and <P'k are scalar functions of the same 
arguments. From the requirement of gauge invar
iance 

(4.5) 

we have here 

!p1(A2, Pa+2, P42) = cp1(A2, pa+2, P42) = 0. (4.6) 

Expanding the functions cp 2 and ~2 in powers 
of k and recognizing that 

1P2(AZ, Pa+2, P42) = qJ2(A2, pa+2, p42) = F(A2) (4. 7) 

is the electromagnetic form factor of the pion, 
we obtain for TtJJ. from (4.3) 

T A [< + k +) P4JL PaiL+ J "" = P4 -pa v----(p4-pa+-k)v---
(p4k) (pa+k) 

X F(A2) + 2(p4 + pa+)v[p41'(!p1)a- pa,.+(-ql1)2] 

+ 2p4,.(P4- pa+)v(F)a- 2pa,.+(p4- pa+)v(F)z. (4.8) 

Here ( F) 3 and ( F) 2 are the derivatives of the 
form factor F with respect to the corresponding 
argument, taken at k = 0. 

In addition, the current conservation law must 
be satisfied 

kv.Tv,. = k,.Tv,.A + k,.Tv,.B = 0. (4.9) 

Hence, recognizing that T~JJ. does not contain 

infrared divergences, we obtain 

Consequently, the complete expression for T VJJ. 
(we have retained only the first two terms of 
the expansion) is 

T r k P41L pa,.+ 
VIJ. = (P4+ - Pa+)v----(p4- Pa+- k)v---

L ( kp4) ( kpa+) 

- 2g,.v l F (AZ). (4.11) 
-' 

We see that the derivatives with respect to the 
masses have cancelled out, as is always the 
case. [3 • 5] The expression obtained is the matrix 
element of the radiation from a point-like particle, 
multiplied by the form factor. This corresponds 
to the well-known statement[S-TJ that the first two 
terms of the expansion of the amplitude in the fre-
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quencies of the photons are determined by the total 
charge of the system and, consequently, depend 
only on the form factor. It is clear that the calcu
lation of the integral cross section is carried out 
in the same manner as for point-like particles. 
The cross section for the emission of a photon by 
pions [see (2.22)]. accurate to terms of first 
order in w/E and in the ultrarelativistic limit 
with respect to the electrons, is of the form 

-~2)F(A2). (4.12) 

The cross section for the emission of the photon by 
electrons is 

a3 dw ( ~2 - 4!!2 )"' dae = ~- (L-1) 
6£2 (J) ~2 

[ w dF(A2) J 
X F(A2)--A2--
/ E dA2 ' 

(4.13) 

and the interference term, as shown at the end of 
Sec. 2, vanishes. 

The total emission cross section for production 
of a pair of pions in an electron-positron annihila
tion, accurate to terms of first order in w!E, is 2> 

da = dae + dan. (4.14) 

As expected, it is expressed in terms of the elec
tromagnetic form factor of the pion and its deriva
tive with respect to the momentum transfer. In 
exactly the same manner we can obtain the integral 
cross section for the emission in the case of pro
ton-antiproton pair production. 

The authors are grateful to V. M. Galitskil for 
numerous discussions. 

2>we note that in a broad energy interval da77 "'O.ldae, so 
that the main contribution is made by the cross section dae, 
which we calculate exactly. In addition, if we expand das in 
(2.22) in powers of w/E and retain the first two terms of the 
expansion, then this provides a rather high accuracy, up to 
w/E - Y2, as follows directly from the comparison of the ex
pansion with the exact result. 

APPENDIX 

The cross section for emission from point-like 
final particles can be calculated with the aid of the 
following simple procedure. We now present 
dus (2.15) in the form 

can depend only on the four-vector that fixes the 
reference frame in which the photon energy w is 
chosen. Such a vector is n/J. ( 1, 0, 0, 0) 
= A iJ. /@. Taking gauge in variance into account, 
we get 

Rvv' = ~;- [gvv'- A~~v'_ J f. (A.3) 

The quantity f is calculated, as usual, with the aid 
of contraction with the tensor g 1'~~' and is equal to 

t= 1~n2(~2 ~24!L2)"'E2{[(~2-2!L2)Lt-~2)(1--.k~) 

+ 4w2 }. (A.4) 

Substituting (A.3) in (A.1), we obtain (2.22). 
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