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Surface oscillations are considered in a bounded cold plasma in which charged particles flow 
along a constant magnetic field. The boundary of the plasma is assumed to be sharp, so that 
the wavelength of the oscillations is much longer than the thickness of the transition layer. 
General boundary conditions are derived for the joining of the solutions on this layer, with 
the aid of which dispersion equations are obtained for the oscillations in various particular 
cases. It is shown that "oblique" ( kx » kz) surface waves are unstable in the presence of 
particle currents, and this leads to a smearing of the sharp plasma boundary. 

1. INTRODUCTION 

IT is known that currents of charged particles 
excite various types of oscillations in a plasma. [1] 

These effects are as a rule investigated in the 
approximation of a uniform plasma which is 
either unbounded (in the latter case the boundary 
of the plasma is assumed to be sufficiently sharp, 
so that the thickness of the boundary transition 
layer is much smaller than the wavelength of the 
oscillations). In order to be able to carry out a 
co~sistent analysis of all the types of instabilities 
of a bounded plasma, it is necessary to specify 
boundary conditions for the perturbed electric and 
magnetic fields of the oscillations in an infinites­
imally thin transition layer. Such boundary con­
ditions, however, have never been formulated be­
fore for a moving plasma (except for the particu­
lar case of axially-symmetrical perturbations of 
a cylindrical plasma, considered in the paper of 
Gorbatenko [2] ) • 

In the present paper we derive, for a system of 
bounded cold plasma currents moving along the 
magnetic field, general boundary conditions which 
make it possible to consider not only three­
dimensional but also surface disturbances of the 
plasma. It is shown that in a bounded plasma with 
current, situated in a strong magnetic fteld, in­
stability of "oblique" ( kx > kz) surface waves 
takes place (for a plasma of cylindrical geometry 
this corresponds to axially-asymmetrical surface 
perturbations; Tsintsadze and Lominadze [a] have 
left out these effects, owing to an incorrect formu­
lation of the boundary conditions). This instability 
leads to the convection of the plasma transversely 
to the magnetic field and to a smearing of the 
sharp boundary. 

The instability of surface waves in a bounded 

plasma with current is equivalent to collisionless 
current-convective instability of an inhomogeneous 
plasma, which was considered by one of the 
authors. [4] In this sense the present paper shows 
how effects which are typical of an inhomogeneous 
plasma can be investigated within the framework 
of the theory of a homogeneous plasma with sharp 
boundary. 

2. DIELECTRIC CONSTANT OF A COLD 
INHOMOGENEOUS PLASMA WITH PARTICLE 
CURRENTS 

Let a plasma consist of several groups 
(currents) of charged particles moving relative 
to one another along the constant magnetic field 
H0 II C (the self-fields of the currents are neg­
lected). We assume that the equilibrium velocities 
of the particles Ua do not depend on the coordi­
nates, and their densities noa ( y) vary in the Y 
direction (a is the number of the species of the 
group). The temperature of each group of parti­
cles will be assumed for simplicity equal to zero. 
Then the behavior of particles of species a in a 
field E and H of a small perturbation is de­
scribed by the following linearized system of hy­
drodynamic equations: 

ilv a. ea. ea. 
- 0 +(UaV)va = -E + [va:roHa:] +-[Ua:H]; 

t ma mac 

ona + div(nou.Va) + div(nu.Ua) = 0. 
{}t 

(2 .1) * 

Here na and v a are the perturbed density and 
velocity, ea and rna are the charge and mass of 
the particles, WHa = eaH0/mac is the cyclotron 
frequency, and c is the velocity of light. 

*[UJI] = Ua.x H. 
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Expressing with the aid of Maxwell's equations 
the magnetic field of the perturbation H in terms 
of the electric field E, and writing the depend­
ence of the field on the coordinates and on the 
time in the form 

E = E(y) exp {-iwt + ikxx + ikzz}, (2.2) 

we obtain from (2.1) 

. err$. 
VIZ% = '--Q-' 

ma"' 

na = ~: { kxVrzx + n~ :Y (norzVrzy) + kzVaz}, 

Qa: =(I)- kzUa, Aa: = Wua2 - Qa2• (2 .3) 

The perturbed electric current density can be 
written in the form 

Ua2 a ( aE.) WuakxUa2 a(lnnoa:) J 
---- noa-- - E. 

noa ay ay Q"' ay ' 
(2.6) 

where w0a = ( 41Tehn0a/ma )112 is the Langmuir 
frequency of particles of species a. 

3. BOUNDARY CONDITIONS ON THE DISCON­
TINUITY 

Let us consider a cold plasma with a dielectric 
constant (2.6), in which the particle flux densities 
n0a ( y) vary within a certain layer -o/2 < y 
< o/2 near y = 0, the plasma being homogeneous 
in the regions y < -o/2 (region 1) and y > o/2 
(region 2), with n0a = const (we assume, for 
example, that n0a (2) > n0a (1)). We assume that 
the thickness of the transition layer o is much 
smaller than the wavelength of the oscillations 
A ( 6/A « 1 ), i.e., we consider the problem of a 
homogeneous plasma with sharp boundary (dis­
continuity). [2•3] 

We have already noted that the choice of the 
boundary conditions at such a plasma in the form 
of a continuity condition for the tangential com­
ponents of the oscillation fields in an infinites­
imally thin transition layer (discontinuity) results 
in failure to take into account oscillations of the 
surface-wave type. Indeed, any surface perturba­

ix. y = ~ eanoa:Vax, y, j. = ~ ea(noaVza + naUa). (2 .4) tion should lead to the occurrence of nonzero 

"' a 

The electric induction vector, as is well known, 
is equal to 

D; = 6ii,E,. + 4niii I w = ~;,.E,. (i, k = x, y, z), (2 .5) 

where the components of the tensor-operator of 
the dielectric constant Eik• according to (2 .3) and 
(2.4), are 

surface currents and charges, so that besides the 
normal component of the electric field, the tan­
gential components of the magnetic field should 
also become discontinuous. To take this into ac­
count, we write the boundary condition on the 
discontinuity in the form 

2 

~ divD(y)dy = 0, (3.1) 
1 

where the integration is carried out along an in­
finitesimally thin transition layer ( o « A). 

Specifying D in the form (2.5), we represent 
condition (3.1) in the following form, which is 
convenient for further analysis: 

2 2 2 

ikx ~ Dx(y)dy +Dy 1 + ikz~ D.(y)dy = 0. (3.1a) 
1 f 1 

We consider this boundary condition for two 
different cases: a) a rarefied plasma, when the 
thickness of the skin layer is Os = c/woe 
> o (Woe is the electron Langmuir frequency), and 
b) a dense plasma, when Os < o. 

a) Rarefied plasma, Os > o. Substituting in 
(3.1a) the corresponding expressions from (2.6) 
and integrating over an infinitesimally thin layer 
( o- 0) with account of the fact that the tangen-
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tial components of the electric field Ex and Ez 
are continuous, while the derivatives with respect 
to y as well as the normal components Ey and 
the density n0a ( y) experience a finite jump on 
the discontinuity, we obtain, accurate to terms 
-o/A, 

Dy<2) _ Dy<IJ = i ~ .. 4ne,ikzU a. 
" maw" L WHa." - ( w - kzU a.) 2] 

X { WHa.Ex [noa.<2l- n0a.<1l) 

transition to ideal magnetohydrodynamics, when 
the inertia of the electrons can be neglected, 
me - 0. Inasmuch as in the case of low-frequency 
oscillations only the term EzzEz contains terms 
-1/me, it follows from (3.4) that Ez - 0 (this 
corresponds to infinite conductivity of the plasma 
along the force lines, a11 - 00 ). Therefore, for 
6s « o we can neglect in (3.4) all the terms pro­
portional to Ez (except EzzEz ), i.e., terms pro­
portional to os/A and os/6, by virtue of which 
we obtain from (3.4) 

Dz ~ ~: ikz ( ikxEx + a::). (3.5) 

Substituting (3.5) in (3.1a) and integrating over 
the infinitesimally thin layer (with account of the 
continuity of Ex), we obtain, accurate to terms 

(3.2) proportional to 6/A, the following boundary con-

We see that the electric induction vector ex­
periences a finite jump on the plasma boundary 
(discontinuity). Inasmuch as with the aid of 
Maxwell's equation* 

1 aD 
rotH=--

c at 
the normal component of D can be expressed in 
terms of the tangential components of the mag­
netic field, condition (3.2) also determines a jump 
in the latter on the plasma boundary. We note 
that in the absence of currents, Ua = 0, we ob­
tain the usual condition for the continuity of the 
normal component D~2 l = n~1 l. 

The boundary condition (3.2) can also be 
written in terms of the components of the electric 
field 

(3.3) 

b) Dense plasma, 6s < o. In oder to obtain the 

boundary condition on the discontinuity in this 
case, we consider the projection of Maxwell's 
equations on the Z axis, i.e., on the direction of 
the magnetic field: 

ro2 "' " ..... ro2 
(rotrotE)z = - 2 (EzxEx + EzyEy + EzzEz) = -Dz. (3.4) 

c ~ 

We note here that the transition to the limit 
Os = clwoe- 0 for w << WHi corresponds to a 

* rot =curl 

dition: 

D (2)- D (I)= kz2c2 (E (2)- E (1l) (3.6) 
Y Y 002 Y Y· 

This condition can also be expressed in terms of 
jumps of the tangential components of the mag­
netic field. 

4. POTENTIAL SURFACE WAVES 

We consider a rarefied plasma with a thick 
skin layer, os » o, and assume that the oscilla­
tions are almost potential, E :::::: -vzp. Then the 
boundary condition on a discontinuity (3.3) takes 
the form 

(4.1) 

On the other hand, from the Poisson equation, 
or, what is the same, from the equation div D 
= 0, we obtain in the homogeneous regions 1 and 
2 on both sides of the boundary (discontinuity) the 
following equation for potential oscillations: 

Al,2 o;;:·z- (kx2 e.L(1,2) + k.Z E11(1,2l)'¢i,2 (y) = 0; (4.2) 

1 + "' Woa.2(w-kzUa.) 2 

B.L = LJ ' a. W2 [WHa.2- ( W- kzU a.) 2) 

(4.3) 

Choosing the solutions of (3.2) in the form 
zp 1 ~ eKtY and zp 2 - e-K2Y (region 1 for y < 0, 
region 2 for y > 0 ), we obtain the characteristic 
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equations for the determination of K 1 and K 2 . 

Substituting then these expressions into the join­
ing condition (4.1), we obtain the dispersion equa­
tion for the potential oscillations, with account of 
the sharp boundary 0 

To illustrate this method, we consider several 
concrete examples. 

1. ''Plasma with current-vacuum'' interface. 
Assume that in region 2 ( y > 0 ) there is a 
plasma consisting of stationary ions and electrons 
moving relative to them with velocity U (plasma 
with current), while in region 1 ( y < 0) there is 
vacuum. Assuming that the frequency of the os­
cillations is w :S wHi « wHe• we obtain accurate 
to terms ~me/mi and wk/wiji « 1 for the 
region 2 ( y > 0 ) 

In region 1 we have E1) = E<,t) = A1 = 1, 

'Xi = (ki + ki) '"· 

(4.4) 

The boundary joining condition (4.1) has in this 
case the form 

8'¢2 [ CilHi2 - Cil2 CilHi ] 
-8 -kx ( kU_) ___ '¢2(Y)=0. (4.5) 

y CilHi Cil- z (j) 

Substituting in (4.5) the solution of (4.2) with 
account of (4.4), we obtain the following dispersion 
equation for the oscillations: 

(4.6) 

For low-frequency oscillations, w « WHi• this 
equation reduces to the form 

mi (kzU) 2 
k Z(Cil-k U)2-k2CiJn·2--k¥2Ciln;z-. --= 0. (4o6a) 

X Z Z \ me ~ (j)2 

For small kz, when 

kx2 ~ kz2 mi Cilni2 ' l(j) ~ kzU, 
me Cil2 

bility of the surface waves, with an increment 

(4.8) 

In this case K2 is complex, and the surface wave 
has an oscillating structure with respect to y, 
becoming attenuated on the average in space 0 

It follows from (4.6) that the high-frequency 
oscillations with w ~ kzU » WHi (but w « WHe) 
also are unstable, with increment 

v~( 1::1 Cilnikzu)": (4.9) 

The surface waves considered here are the 
limiting case of collisionless current-convective 
perturbations in a plasma with inhomogeneous 
current, which were considered earlier 0 [4] The 
instability of these waves should lead to effects 
of the same type as the Rayleigh-Taylor instability 
in a plasma contained by a magnetic field against 
the force of gravity,[5J i.e., to convection of the 
plasma transversely to the magnetic field and to 
smearing of the initially sharp boundary, so that 
after some time, when the transition layer be­
comes sufficiently broad ( o ~ A.), the instability 
of the plasma should be considered using the 
methods developed in [4]. 

b) Plasma layer with current. Let us consider 
stability of a plasma layer with a current of 
thickness a, surrounded on both sides with 
vacuum. The solution of (4.2) inside the layer 
-a/2 < y < a/2 can be chosen (with account of 
reflection of the waves on the boundaries of the 
layer) in the form l/!2 ( y) ~ cosh K2y, where K2 

is defined, as in the preceding case, by (4.4). 
Substituting this solution into the joining condition 
(4.1) on the boundary y = a/2, we obtain the fol­
lowing dispersion equation for oscillations with 
w « WHi= 

hx2a k CilHikzU chx2a =O (4 .10)* 
'X2 s -2-- X (j) ( (j) - k.U) 2 . 

In the case of large layer thickness, when 

x2a ~ 1, sh (x2a I 2) ~ ch (x2a I 2) ~ exp (x2a I 2), 

we obtain from this 

Cil ~ (CilHi I kx I Ukz I kx) 'I•, 

we arrive at the earlier equation (4.6a) for a 
semi-bounded plasma. To the contrary, in the 

(4.7) case of a thin layer, K2a « 1, when 

i.e., the oscillations are unstable if kx has the 
proper sign. We note that in this case, according 
to (4.4), K~ > 0 and the wave attenuates exponen­
tially on moving from the boundary inside the 
plasma. 

If 

then according to (4.6a) we get aperiodic insta-

sh (x2a I 2) ~ x2a I 2, ch (x2a I 2) ~ 1, 

we obtain (for ISc » ki ( m/me ) win/ w2 ) 

Cil ~ [2CilHikzU I kxa]'l•, (4.11) 

i.e., when kz and kx have the appropriate signs, 
we get aperiodic instability of the thin layer, with 

~' sh = sinh, ch = cosh. 



SURFACE WAVES IN A PLASMA WITH A CURRENT 1201 

an increment that increases with decreasing 
layer thickness. 

5. NONPOTENTIAL OSCILLATIONS WITH 
6s > o 
Let us consider low-frequency ( w « WHi) 

non -potential oscillations of a homogeneous 
bounded rarefied plasma with current, where the 
thickness of the skin layer exceeds the thickness 
of the boundary layer, 6s = c/ w0e > o. 

Expressing with the aid of Maxwell's equations 
the components of the electric field of the oscilla­
tions Ey and Ez in terms of Ex, and represent­
ing all quantities in the form 

~ exp {- iwt + ikxx + ikzz- 'Kyy}, 

we reduce the boundary condition (3.3) to the form 

{ 
Xy Wo;2 (t)oe2 [ 1 1 wkzU ]} 12 

kx WHi 2 WHe W- kzU W CA2ki(w- kzU) 1 

=0, (5.1) 

where CA = H0/[ 47fn0mi] 1/ 2 is the Alfven velocity. 
The dispersion equation of the oscillations in 

the homogeneous region is in the general case 
very complicated. However, since we are con­
sidering a rarefied plasma, we can confine our­
selves to slow perturbations of the convective 
type, for which kx » kz and Exx = Eyy 
« c2k~/ w2, and Eyz - 0. Then the dispersion 
equation of the oscillations of the Alfven type 
takes on the form (cf. [s]) 

(5.2) 

from which we get for Ky the expression 

(5.3) 

where Ell and El are defined by (4.3). 
Substituting (5.3) into the joining condition on 

the interface between the plasma and the vacuum, 
we obtain the following dispersion equation for the 
oscillations: 

wo 2 
_e_ w4 + w2(w- k U) 2- WH·2 
k 2 2 z ' XC 

[ ( wz ) m· k 2 J 
X (k,U)Z 1- kz2cA2 + m: k:2 w2 = 0. (5 .4) 

This fourth-order equation in w always has com­
plex roots corresponding to the instability of the 
oscillations. In particular, if w » kzCA, (5.4) 
takes the form 

(5.5) 

Comparing (5.5) with the dispersion equation 
of the low-frequency potential oscillations (4.6a), 
we see that an account of the non-potential nature 
of the oscillations is essential at electron veloci­
ties U 2 c A (but in this case w » kz U) and under 
the condition that w5elkic2 2. 1, i.e., A ~ Os. 

Thus, if w » kzU, the two highest-order roots 
of (5.5) take the form 

2 
W1,2 = (5.6) 

so that the instability of the oscillations ( w2 < 0 ) 

takes place under the condition 

U I CA > (kz I kx) (m; I me) 'I•. (5.7) 

We note that since we have assumed that w « wHi• 
the solutions (5.6) are valid if w5elkic2 » 1, i.e., 
A » os· 

To the contrary, the two other roots of (5.5) 

W324 =- (kzU)2 (5.8) 
' k.Zm;/kx2me- U2/cA2 

are unstable at low velocity: 
U < CA(kz/kx)(mi/me) 112 . When condition (5.7) 
is satisfied, they are stable, and when U/cA 
» ( kz/kx) ( mi/me )112 they go over into ordinary 
Alfven waves with w = kzc A-

6. SURFACE WAVES IN A DENSE PLASMA, 
o > os 

As was already noted in Sec. 3, the transition 
to a small skin layer, os - 0, is equivalent to 
transition to ideal magnetohydrodynamics of a 
plasma with infinite longitudinal conductivity, so 
that Ez- 0. The dispersion equation of the os­
cillations in the homogeneous plasma then as­
sumes the form 

From this, taking into account that Exx = Eyy and 
Exy = -Eyx• we get 

(6 .2) 

Expressing with the aid of Maxwell's equations 
all the components of the electric field in terms 
of Ex, we rewrite the joining condition (3.6) in 
the form 

"k 2/ 2 z 
{ 

Eyx - ~ xXyC (i) } I _ O 
Exx-(c/w)2(k)'+kz2) 1- · (6 .3) 
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We note that in the absence of currents, U = 0, 
we get according to (2 .6) Eyx = 0. 

Let us consider by way of an example a plasma 
with current, bordering on a currentless but suf­
ficiently dense plasma, so that the condition 
Os < o is satisfied at all points of the transition 
layer. The dispersion equation for low-frequency 
( w « WHi) oscillations with kx » kz breaks up 
in this case into two equations: 

( 1- C~:x2 Bxx) [ Bxy- 2i( Bxx- C
2:i) J = 0, (6.4) 

the first of which ( Exx = c2k~/w2 ) describes 
stable magnetic-sound oscillations with frequency 
w = kxc A• and the second can be reduced to the 
form 

w2 -cA2ki+wHikzUkx/lkxl =0. (6.5) 

We see that it describes surface waves of the 
Alfven type. Under the condition 

(6 .6) 

we get a current-convective instability of these 
oscillations, which leads to the smearing of the 
sharp plasma boundary. 

In conclusion it must be noted that the excita­
tions of surface waves in a plasma with sharp 
boundary (A. » o), considered in the present 
paper, are due in final analysis to the current 
gradient and constitute, as already noted, the 
limiting case of a collisionless current-convec-

tive instability of an inhomogeneous plasma. [4] 

However, effects of this kind can take place also 
in the absence of current, but at a finite electron 
temperature. Then the surface waves are the 
limiting case of drift waves in a plasma with 
sharp boundary, which were considered in a paper 
by one of the authors. [6] 
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Errata 

Vol. 20, No. 1, p. 133 (V. G. Bar'yakhtar and S. V. Peleteminski1) 

Formulas (40) and (42) should read: 

ene e2n 
Ci12 = TT, Ci'12 = 2mT cth ex, 

1 , ene { 1 1 + ch2 ct ~ } 
:t'" = T ~ 12 = 2mT zcthct + ct sh•:t - rcthct , 

~12 = e;e { cth cr + 4~- w~ } , 
, H 

n8 { 3 1 + ch2 X 5 + ch2 cr ~ [ 1 + ch2 cr -] ( ~ )2 } 
112 = 2m 4 cth :t + cr sh2 ct + ct2 cth :t sh2 :t - T _ cth cr + 2:t sh2 :t _ + T cth cr , 

- ene { 3 ~ } 
ctJ2 = 2mT cth a+ 2ct -2 wH ' 

_ n,T {15 1 + ch2 :t 
1 12 = eH 4 +3:xcthct+ct2 sh•cr 2i ( ~ + C( cth cr) + (fr n, 

1 e 
Cin = e2Jo, :tu = T- ~n = T (J,- Vo}, 

1 
In= T (J2- 2/;JJ + I;,"Jo) 

*ch "'cosh, sh "'sinh, cth "'coth. 

(40)* 

(42) 


