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The exchange bond energy of two atoms A and B with very different ionization potentials such 
that IAIIB « 1 is investigated. In this case the asymptotic exchange bond at large distances 
R between the atoms is determined by the square of the electron wave function of atom A at 
the point R: J ~ >¥). ( R). 

THE asymptotic value of the exchange coupling 
of atoms at large distances is needed in many 
problems dealing with electron transitions occur
ring in atomic collisions; for example, in the cal
culation of the spin-exchange cross section for the 
transition between fine-structure components. [1] 
It is known [2] that the Heitler-London method gives 
an incorrect value of the exchange coupling for 
R-oo. The first correct asymptotic value of the 
difference of the energy of the triplet and singlet 
states for two hydrogen atoms in 1S states was 
calculated by Herring and Flicker [3] and by 
Gor'kov and Pitaevskii. [4] Analogous calculations 
for any two atoms with equal ionization potentials 
are given in the paper by Smirnov. [ 5 J Finally, 
Firsov and Smirnov [6] investigated the behavior 
of the terms of the system AB-. 

The purpose of the present work was to derive 
asymptotic values for the exchange coupling in the 
case of two atoms (A and B) with strongly differ
ing ionization potentials, such that a = ..j 2f..LlA « {3 

= .J 2~-tiB, where IA and IB are respectively the 
ionization potentials of A and B, and 1-t is the 
electron mass. 

We consider first the splitting between the 
singlet and triplet states of two single -electron 
atoms: l:.E=E1-E3• Let >¥1(rtor2 ) and >¥3(rtor2 ) 

be the exact coordinate wave functions of the cor
responding states. The function >¥1(rto r 2 ) is sym
metrical while >113 (rio r 2 ) is antisymmetrical with 
respect to the substitution r 1 ...__.. r 2• When the 
distance between atoms is large ( R - oo ) these 
functions obviously have the following properties 

'¥1 (rt, r2) --+ 2-'/'q;1 (rt) CJlB (r2- RB), 

'¥3 (rt, r2)--+ 2-'/'cp3 (rt)<JlB(r2- RB) 

for 13lrz-RBI ~ 1, 13lrt-RBI ?>1. (1) 

Here cp B ( r) -atomic wave function of the electron 
at the atom B, and the functions cp 1 ( r) and cp 3 ( r) 

tend to the corresponding atomic function 
tpA(r1-RA) when I r1-RA 1-0. Near the atom 
B, at alr1-RBI ~ 1 but at f31r1-RBI »1, the 
difference between cp 1(r1) or cp 3 (rf} and the 
atomic functions can, for sufficiently small a, 
be described by means of a very simple model, 
as will be done later. 

The splitting l:.E is expressed in terms of an 
integral over the surface S bounding a certain 
volume Q [ 4•5]: 

s ('J1'3H1Jft- 1Jf1H1f3) dVtdV2 = (Et- E3) ~ 1Jf11J!3dVtdVz 
g g 

However, the choice of the volume Q must be 
made in a different manner than for the case of 
identical a and {3.[4•5] 

Let us consider the volume Q for which 

(2) 

I r1 -RBI >a ({3a » 1, a« R) and r 2 is arbi
trary, i.e., from the total volume ( rto r 2 ) of the 
system for r 2 we exclude the volume of the sphere 
of radius a with center at the point R B· The in
tegral over the value Q in the left side of (2) is 
equal to% accurate to O(e-zaR), as can be 
readily seen from the form of the functions (1). 
In precisely the same manner, the integral over 
the hypersurface S reduces to a two-dimensional 
integral over the sphere I r 1- RB I = a, so that 

1 1 1 
-2 1'J.E = -4t .l [cp3(ri) V'cp1(r1)- cp1 (rt) Vcp3(ri)]dS. 

~ lr1-RBI=a (3) 

It is now necessary to determine the functions 
cp 1 and cp 3 from the exact Schrodinger equation, 
in which the interaction between electron 1 and 
atom B is included. In view of the small dimen
sion 1/{3 of the atom B, the effective radius of 
the interaction between the electron and the atom 
B is small. Therefore, following the known pro
cedure, used for example in [6, 7J, we can replace 
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the well by a boundary condition at the point r 
= RB (for convenience we locate the origin at the 
point B: RB = 0 ): 

1 a . 1 
--.- (rrp') = -x; = --, 

rrp' Or r=O a; 
(4) 

where a 1<3> are the scattering lengths of the elec
tron by the atom B in the singlet and triplet states 
respectively. 

The subsequent analysis is perfectly analogous 
to that used for negative ions in [s, 7J • According 
to C7J the boundary condition (4) can be replaced 
by a singularity in the right side of the equation: 

(5) 

where the constants c 1 and c 3 are obtained from 
the conditions for joining cp 1(rt) and cp 3(r1 ) with 
cpA ( r- R) with ar1 » 1 and from condition (4). 
With the aid of Eq. (5) we can easily obtain the in
tegral of (3) over the sphere: 

1/2/'lE = -1/2 ~ [rp1(r1)C3o(r1)- rp3(ri)C3o(r1)]dV1, 
lr1l=a. 

from which, recognizing that (4) is equivalent to 
the limit 

at r 1 - 0, we obtain 

(6) 

It remains to find the constants C 1 and C3, i.e., 
to solve Eq. (5) with boundary condition (4). It is 
easy to find such a solution accurate to terms 
0 (R-2 ). Indeed, 

c. e-a.Ir ( 2e2 ' :;, 

rpi(r) = fJJA(r- R) + ---'--, a 1 = \ a 2 +-) 4n r R , 

Then the boundary condition is of the form 

4n[ Ci J - -. -- a 1 + <pA(R) = -- x.i, 
C' 4n 

whence 

The same result can be obtained with the same ac
curacy by taking into account a weak homogeneous 
field e 2z/R acting on the electron near the point B. 
Then the wave function is sought in exactly the 
same manner as in the problem of the negative 
ion. [7] 

The joining of the obtained function with the 

atomic function cpA ( r - R), on the one hand, and 
condition (4), on the other, lead to the same value 
(7) for the constants ci. Substituting the obtained 
constants in (6), we obtain the asymptotic value of 
the exchange coupling which is of interest to us: 

1 4n x1 - x3 
-l'lE = -- fj)A 2 (R) (8) 
2 211 (a1 -x1)(a1 -x3 ) · 

It is obvious that this result cannot be used for 
small I a - Ki I, i.e., when the bound state of the 
electron with the atom B (B-) has an energy coin
ciding with the energy of the electron in the atom 
A. This is perfectly understandable, for then res
onant transfer of an electron is possible, and when 
Ki = a the asymptotic value of AE turns out to be 
e-aR (just as for H; ), and not e -wR (as is usual 
for neutral atoms ) . 

We can attempt to use the same model for an 
estimate of the exchange interaction of the atoms 
A of alkali metals with sufficiently "compressed" 
atoms B of inert gases. For these a/ {3 = Y2• If we 
assume that the multipole interaction of the atoms 
is small, then we attempt to describe the short
range potential of the interaction of the atom B 
with the electron by means of the boundary condi
tion (4). Then the wave function of the external 
electron of the atom A satisfies the equation 

( l'l-a2 + lr 2e~)rp(r) =Co(r-RB). 

when C = 0 the equation describes CfJA (r -RB). 
In analogy with the derivation of (3), we get 

l=EA0 -E= ~ (rpAHrp-q;H<pA)dV=_i_ ~Co(r)<pA(r)dV 
Q 211 

c 
= ·~ <j!A(R). 

Using for C the already calculated value (7), we 
obtain 

1 4n 
]=---qJA2 (R), 

211 a 1 - x 
(9) 

where K- 1 is the scattering length of the electron 
by an atom of an inert gas. The accuracy of the 
obtained formulas is determined by the value 
0 ( R - 2 ) of the discarded terms. Consequently, 
it is necessary to retain in the asymptotic expres
sion for the wave function [B] 

fj)A (R)R-+oo = e-a.RKR11a.-1 ( 1 + 0 (1 / R)) 

only the first two terms. 
We now discuss the conditions for the applica

bility of formulas (8) and (9). In the model in 
question, the binding energy IA of the electron in 
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the atom A should be so small, that for an elec
tron near the atom B we can use the approximation 
of the effective potential. But the deductions of the 
applicability of this approximation in the region of 
negative energies E ~ - lA of the electron can be 
drawn by starting from data on the scattering of 
the electrons by the atom B. We therefore exam
ine the results on scattering of electrons by atoms 
of noble gases. It turns out that for Ar, Kr, and 
Xe the radius of the potential r 0 does not coincide 
at all with the magnitude 1/{3 owing to the pres
ence of a very strong polarization interaction be
tween the electron and the atom: V = const • r-4 

(for Ar, for example, const = 10.8 atomic units ).[9] 

As a result, the region of linearity of tan 60 as a 
function of k = -./ 2t.tEel for Ar and Kr, for exam
ple, is of the order of .6-k ~ 0.1 atomic units. [9] 

This is precisely connected with the Ramsauer 
effect observed in these gases. Thus, for the 
atoms Na and K with I k I = a = 0.5 atomic units 
we cannot deduce any information at all on the 
value of K from the data on electron scattering. 
However, for the systems Na-He and K-He 
formula (9) apparently makes possible an esti
mate of the exchange coupling, in view of the 
small value of the polarizability of the He atom, 
with the scattering length of the electron by the 
He atom being a= 1.44 atomic units. [10] As re
gards formula (8), it is apparently applicable when 
a ~ 0.5-0.4 atomic units only when the hydrogen 
atom is atom B. In this case [10] a 1 = 1. 9 atomic 
units and a 3 = 6. 7 atomic units. 

It must also be noted that in condition (4) we 
can take into account also the next higher term 
of the expansion in the energy k2• It must be re
membered here that owing to the presence of the 
potential const • r -4 this expansion differs [tt] from 
the ordinary expansion 

kcot6o = --a-1 + yk + vk2!n k + O(k2). 

An investigation of the scattering of the electrons 
of smaller energies by atoms with approximate 

account of the polarization potential is given in 
[ 12 ]. The condition for the applicability of their 
approximation is apparently the smallness of the 
electron energy compared with the depth of the 
polarization well. The binding energies of the 
electrons in alkaline metals do not satisfy this 
condition in systems with Ar and Xe, and there
fore, to find the exchange coupling, it is necessary 
to obtain a more accurate solution of the problem. 

In conclusion, I thank E. E. Nikitin and Prof. 
N. D. Sokolov for useful discussions of the work. 
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