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The energy dependence of the motion of the Regge poles is investigated on the basis of an ex
act solution of the Schrodinger equation for a potential of the Coulomb-well type, which is 
identical with a Coulomb potential at short distances and which cuts off like a rectangular-well 
potential at large distances. It is shown that the trajectories of the poles in a Coulomb-well 
potential have a Regge character at small and medium energies. The asymptotic pole 
trajectories at high energies coincide with those for the Coulomb case. 

INTRODUCTION 

MUCH attention has been paid recently to the 
analytic properties of the scattering amplitude in 
the complex angular-momentum plane. Regge[t] 
has shown that in nonrelativistic quantum mechan
ics, the only singularities of the amplitude for 
potentials that are superpositions of Yukawa poten
tials, are simple moving poles (Regge poles). 
Hegge's hypothesis that the singularities of the 
scattering amplitude in the complex orbital angular
momentum plane are simple has been extended 
further to relativistic quantum field theory. This 
has stimulated interest in the behavior of the Regge
pole trajectories for other types of potentials. This 
question is considered in a number of papers on the 
basis of the first or second perturbation-theory 
approximation, while in other papers it is consid
ered by investigating the potentials for which the 
Schrtldinger equation has an analytic solution. The 
number of such potentials is small. Thus, Singh [ 2] 

investigated the motion of the poles in a Coulomb 
potential, Bollini et al. [3•4] in a square-well poten
tial, and Arutyunyan et al.[ 5J in a 6-function poten
tial. 

We note that the dependence of the aforemen
tioned potentials on the distance differs greatly 
from that of the Yukawa potential, which is the most 
enticing from the physical point of view. In this 
paper we investigate the motion of the poles in a 
potential of the type of a Coulomb well, which is 
similar in many respects to the Yukawa potential. 
In the first section we derive the equation and dis
cuss the general structure of the Regge-pole trajec
tory; in the second we obtain the locations of the 
Regge poles at high energies; in the third we in-

vestigate the relative pole motion; in the fourth we 
study the motion of the poles at medium and low 
energies. In the last section we discuss the re
sults. 

1. DERIVATION OF THE REGGE-POLE EQUA
TION. GENERAL STRUCTURE OF THE 
TRAJECTORIES 

We define the Coulomb-well potential in the 
following manner: 

V={g/2mr, 
0, 

w<1 
~tr > 1' 

(1.1) 

where g is the coupling constant and m the particle 
mass. The solution of the equation in the potential 
(1.1) is of the form 

l"n e-il<r ( kr )v+'/, 
¢ = -- F ('A, 2v + 1, 2ikr), ~tr < 1, (1.2) 

f{i+v) 2 

¢ 8 ~ (nkr / 2) 'I•Hv<1l (kr), W > 1, (1.3) 

where v = l + 1/2, A. = v + 1/2 + g/2ik, k is the par
ticle momentum, F(A., 2v + 1, 2ikr) the confluent 
hyper geometric function, H~0 (kr) the Hankel func
tion of the first kind, and r(1 + v) the Euler gamma
function. 

The equation for the Regge poles can be obtained 
in this case by joining together the logarithmic 
derivatives of the wave functions at the point 
!J.r = 1: 

Hv<t)'(kr) . v+ 1/2 
(2kr)-t + Hv<1l(kr) =- t + kr 

2. F'('A,2v+ 1,z) + £ . 
F('A, 2v + 1, z) ' 

(1.4) 

where z = 2ikr. An equation equivalent to (1.4) can 
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also be obtained on the basis of the S-matrix in the 
Lipman-Schwinger form [sJ. In such an approach 
we can expand an integral rather than the special 
functions, which is a more direct operation. 

Let us show how to gain an understanding of the 
over-all structure and behavior of the Regge trajec
tories from simple physical considerations. After 
the substitution (r = ex, 1/J ~ x -f r), the Schrodinger 
equation for the potential (1.1) takes the form 

x"- V2X = [gr -- (kr)2]x, 

x"- v2x = - (kr)2x, 

gr 

[=0 

£<0 

(1.5) 

Figure 1 shows plots of the effective potential 
"energy" for three values of E = k2 /2m and for a 
coupling constant g < 0. The plot of the effective 
potential "energy" for a Coulomb-well potential 
(solid line) differs from the corresponding plot for 
a Coulomb potential (dotted line) only at large dis
tances JJ.r > 1. The plot of the effective potential 
"energy" in a Coulomb potential with E = 0 is a 
straight line. It is known that there are no bound 
states in such potentials. Therefore all the Coulomb 
trajectories go to infinity as E - 0. On the other 
hand, the curve corresponding to the Coulomb well 
has a trough. Therefore, if the trough is sufficiently 
deep, bound-state levels with energy ;g~ are pro
duced, meaning that Regge poles corresponding to 
these bound states appear on the real positive axis 
of the v plane. It is obvious that the number of 
Regge poles coincides with the number of the levels. 
Let us trace the motion of the Regge poles as the 
energy E is varied. 

If E < 0 and k2 « g JJ. (this means that the inter
cept of the Coulomb potential with the abscissa 
axis r 0 is far from the edge of the well JJ.-1), then 
the difference between the Coulomb potential and 
the Coulomb-well potential type is large. In this 
case the Coulomb energy levels ;g~ begin much 
lower than the bottom of the well, and consequently 
also much lower than the well levels ;g~· With in-

creasing binding energy E, the point r 0 approaches 
JJ.- 1, and the minimum of the Coulomb potential 
rises. When JJ.ro ~ 1 the two potentials become 
approximately equal, and therefore their energy 
levels should coincide approximately ( 18 ii' ~ 18 ~). 

Thus, at large E, the Coulomb trajectories are the 
asymptotes of the bound-state trajectories for the 
Coulomb well. 

When E > 0 a particle situated at the bound level 
;gw can penetrate into the region JJ.r > 1, and there

n 
fore the Regge poles shift in this case from the real 
axis to the upper half plane of v. 

2. LOCATIONS OF THE REGGE POLES AT HIGH 
ENERGIES 

Let us investigate on the basis of Eq. (1.4) the 
locations of the trajectories of the bound states as 
E - oo • To this end we use the asymptotic values of 
the Hankel function and of the confluent hypergeom
etric function as z-oo. As shown in the prelimin
ary analysis, the solution should tend to the Coulomb 
solution as E - oo. Therefore it is convenient to 
separate directly the pure Coulomb term in (1.4): 

r( v+~- Z~k )/r(I,)={2U2(A,2v+1,z) 

[ H~~i(kr) J } 
- 1 + iHv<t>(kr) U2(A, 2v, z) 

{[ H~~t(kr) J 
X 1 + iHv<t>(kr) U1 (A, 2v + 1, z) 

1 g ) }-1 
- 2 ( v + -2 - Zik Ui(A, 2v + 2, z) , (2 .1) 

where u1 and u2 are confluent hypergeometric func
tions of the third kind. 

The poles f(A.) determine the positions of the 
bound levels in a Coulomb potential. We therefore 
seek a solution of (2.1) in the form,\= -N + 6, 
where N is an integer and 161 « 1. Iterating with 
respect to 6, we get 

1 gr gr e-4>< ( 4x) -2-gr/2>< 
v=---N--+ I . (2.2) 

3 4x f(1 + N)f(-N- gr 2x) 

It follows from the solution (2.2) that at high 
energies (K - oo) the Regge poles tend to half
integer negative points. Figure 2 shows a plot of 
the motion of the Regge poles at neg alive energies. 
The ordinates represent the reciprocal energy E-1 

in arbitrary units, and the abscissas Re v. The 
straight lines drawn from the half-integer points 
are the Coulomb solutions, which are the asymptotes 
when E is large. The points where the curves 
cross the lines Re v = 1/2, 3/2, etc. determine the 
binding energies of the levels. 
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It follows form (2.2) that when g/ik = N0, where 
N0 is some integer, all the curves with N:::::: N0 have 
a deviation o = 0. This means that all curves with 
N :::::: N0 pass simultaneously through integer or half
integer negative values of v, and coincide exactly 
at that instant with the corresponding points that 
lie on the Coulomb lines. These cases are marked 
in Fig. 2 by full points on the curves. 

On the basis of (2.1) we can show that poles 
possess this property in the exact solution. In fact, 
the points 

g /ik = 0, 
g /ik = 1, 
g /ik = 2, 

v = - 1/2, - 3/2, - 5/2, •.. ' 
v = -1, -2, -3, ... , 
v = - 3/2, - 5/2, - 7/2, .. . (2.3) 

etc. are essentially singularities of the second kind 
for the left side of the exact equation (2.1), i.e., the 
left side of (2.1) can assume an arbitrary value, 
depending on the manner in which it tends to these 
points. On the other hand, the right side of (2.1) 
has no singularities at these points, i.e., it is con
tinuous in the vicinity of the points (2.3). The 
points (2.3) will therefore be roots of the exact 
equation (2.1). 

3. RELATIVE MOTION OF THE REGGE POLES 

Let us discuss another important property of 
the pole motion-the reciprocity property. We shall 
prove that if a Regge pole passes through a point 
v = N/2 (N is an integer), then a second point passes 
simultaneously through the point v = -N/2. We note 
that the converse is not true. 

To prove the reciprocity property, we first 
transform Eq. (1.4) with the aid of the recurrence 
relations into 

+ Hv~(kr) =I v + 1/ 2 - g/2ik F(lv, 2v + 2, z) 
iH.v<1>(kr) v + 1/ 2 F(lv, 2v + 1,z) · (3.1) 

We then rewrite the left side of (3.1), taken at the 
point v = -N/2, for the positive values v = N/2 = v: 
1 + H~~1 (kr) = 1 + H~~-; (kr) = 1 + 2iv 

tm1> (kr) iH~ (kr) kr 

n<t>- (kr) + l+v • 

iH-;<1> (kr) 
(3.2) 

The transformation of the right side of the equa
tion is made complicated by the fact that as 2v 

- - N the confluent hypergeometric functions have 
singularities. It can be shown, however, that the 
hypergeometric function F(A., c, z) has the following 
property: 

. (-z)NHf.(1+!v+N) 
hm (c + N)F(t., c, z) = -r(t.),r(t + N)r(2 + N) 

(c+N~O 

X F(1 +t.+N, 2 +N, z). (3.3) 

Therefore the ratio of the hypergeometric functions 
contained in the right side of (3.1) is transformed 
to 

r F (/.., 2v + 2, z) __ 2v(2v-1) F(~-1,2v, z) 
av!~NF(/.., 2v+ 1, z)- (1-1)zF ('J., 2v + 1,z} ' 

- - 1 g 
/.. = v + 2 + 2ik • (3.4) 

Substituting (3.2) and (3.4) in (3.1) and applying 
to the hypergeometric function F('X- 1, 2v, z) the 
shift theorem with respect to the second index, we 
obtain an equation for the Regge poles at the point 
v = v. By definition, this equation is assumed to be 
valid at the point v, and must therefore be valid 
also at the point -v. This proves the reciprocity 
property. The conjugate points v and -v are 
marked in Fig. 2 by crosses. 

Let us determine the positions of the bound 
levels in S-states, i.e., in those cases when the 
Regge-pole trajectories cross the vertical line Re v 
= 1/2. In this case the general equation (3.1) takes 
the form 

F (g /2ik, 1, 2ikr} = 0. (3.5) 

It is clear that when the energy increases the solu
tion of (3.5) will tend to the Coulomb solution gr 
= nz. The thin straight lines in Fig. 3 are the 
Coulomb solutions corresponding to different values 
of the principal quantum number n. The point of 
intersection of the line gr = canst with the n-th 
curve on Fig. 3 gives the position of the nS-level. 

Let us separate the roots of (3.5) for large en
ergies. Using the asymptotic value of the confluent 
hypergeometric point, we obtain the following 
formula for the solution of (3.5): 
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z gr=nz 

FIG. 3 

gr = nz- z2nez I f2(n), l = 0, (3.6) 

where z = -4K. Expression (3.6) coincides with 
(2 .2) if we put in the latter v = 1/2. From the 
curves of Fig. 3, and coincidentally also from 
formula (3.6), it follows that only Coulomb poles 
can pass through the point v = 1/2 from the right 
half-plane of v to the left one. The reason is that 
all the curves have only pure Coulomb asymptotes. 

4. MOTION OF REGGE POLES AT MEDIUM AND 
LOW ENERGIES 

Let us find the positions of the Regge poles at 
low energies. It follows from (3.1) that when E = 0 
their position is determined by the equations 

lzv+i (2l"- gr) = 0, Rev< 0, (4.1) 

l2v-1 (21' - gr) = 0, Rev> 0. (4.2) 

The roots of (4.1) and (4.2) are designated in Fig. 2 
by vN(O). The vertical lines through v = vN(O) are 
asymptotes for the curves vN(K). 

It is difficult to obtain from (3.1) the expansion 
of the pole trajectories in the vicinity of the point 
E = 0, since the expansion of the function F, whose 
index contains the momentum pin the denominator, 
is quite cumbersome. We shall therefore study the 
pole trajectories on the basis of the S-matrix 
representation in the Lipman-Schwinger form. If 
we apply to it the integral Mellin transformation, 
then the equation for the Regge poles will take the 
form 

r da 
1 = J -. x2" r(v- cr)r(-cr)R(cr, v), 

0 2m 
(4.3) 

where K = k/2i~-t and the contour n separates the 
poles of the interaction function R(a, v) from the 
poles of the r-functions. 

Omitting the cumbersome calculations, we 
present the final form of the equation for the Regge 
poles, for a Coulomb-well potential, in first order 
in K2: 

_2" _ f(-v) (1 +A)l2v+! +Bl2v+z 
X - r(v) (1+C)l2v-1+Dl2v-2' 

(4.4) 

where 

A = - 14v + 11 x2- 2x2 ( 2v2 + 5v + 5 - _1_) ' 
3 ( v + 1) gr v + 1 

( 3v + 2 14v + 9 ) 
B = 2x2 (-gr)-'" --+ , 

v + 1 3gr 

x2 2x2 
C=---+ (10v2-9v-4) 

v-1 3gr(v-1) 

2x2 
-t;~(8v3+20v2+22v-17), 

3 (gr)2 

D = (-gr)'/, 2"'2 
[ 7 - 4"- (gr)-1(4v2 + 12v + 17)]. 

3gr v -1 

Solving ( 4.4) with respect to v, we obtain two 
types of pole trajectories. We consider first the 
bound-state poles. We assume that when K = 0 the 
poles are located at the points vN(O), where N is 
the number of the root of the Bessel function (4.1) 
or ( 4.2). To obtain the behavior of the poles near 
the value K = 0, it is sufficient to expand in (4.4) 
in terms of the index of the Bessel functions 

/2v±1 ;::::::; (v- VN (0}} iJ/zv±1 I iJv. 

We then obtain 

r r(1-v) J 
v- VN(O);::::::; - L Cl2v-1 + Dlzv-2 + x2" r(1 + v) lzv+! 

( 8/zv-1 )-1 
X 8v ' RevN(O) > 1; (4.5) 

[ r(1+v) J 
v- VN(O);::::::;- Alzv+i + B/2V+2 + x-2" r(1- v) lzv-1 

( 8/zv+! )-t 
X iJv ' Re VN(O) >- 1. (4.6) 

We note that the terms proportional to K±2v in 
(4.5) and (4.6) are directly connected with the scat
tering phase shift and determine the deviation of 
the trajectory from the real axis for real E > 0. 
We can show that 

lm(v-vN(O))= 
2VNX2vN f(1- VN) (dvN(Q) ) >O 

Z r(1+vN) dz ' 

RevN(0)>1, (4.7) 

Im(v-vN(O)) 

(4.8) 

The coefficients of K2 in (4.5) and (4.6), as 
follows from physical considerations, are always 
real and negative. Therefore the trajectories can 
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FIG. 4 

go out of the points vN(O) only to the upper half
plane of v (Fig. 4). It follows from (2.2) that at 
higher energies the trajectories are likewise in 
the upper half-plane. At medium energies these 
two asymptotes join together. The over-all picture 
of the bound-state trajectories in the complex v 
plane is shown in Fig. 4. When E < 0 the Regge 
pole shifts from the point v = vN(O) to the point 
v = -1/2 - N. When E is complex, the trajectories 
bend out in the upper half plane of v. Finally, for 
real E > 0, the poles describes arcs of maximum 
radius. 

In a potential of the Coulomb-well type, there 
are in addition to the bound-state trajectories also 
threshold-condensation trajectories or Gribov
Pomeranchuk trajectories.[7] If we put I vi « 1, 
then the terms proportional to K2 in the right side 
of (4.4) should be discarded compared with the 
term K-2v. Expanding the remaining terms in 
powers of v, we obtain 

x-zv = exp [2v(at + vaz)] ~ 1 + 2v[a1 + (a12 + a2)v], 

(4.9) 
where at and a2 are some coefficients that depend 
on the coupling constant g. 

Equation (4.9) defines an entire bundle of trajec
tories that emerge from the origin: 

v ~ -inp I In x + ... (p = 0, ±1, ... ). (4.10) 

The asymptotic behavior of these trajectories at 
high energies can be easily obtained from first
order perturbation theory. After suitable manipu
lations we obtain 

. gf(-v) 
x-2v ~ - 4~tf(v) (v + 1/2) (v + g/2J.t) (4•11) 

When v is small, as can be readily seen, Eq. 
(4.11) has the same form as (4.9), but with different 
coefficients at and ~· Thus, Eqs. (4.9) and (4.11) 
ensure a continuous joining of the trajectories on 
going from low to high energies. It can be shown 
that the corresponding solution of (4.11) goes off 
to infinity parallel to the direction defined by the 
angle 

q> = ±n/2+ a, (4.12) 

where a is the phase of the momentum K, the plus 
pertains to the upper half-plane, and the minus to 
the lower. Figure 5 shows the trajectories of the 

FIG. 5 

poles for different complex values of the energy. 
The trajectories corresponding to negative ener
gies (a = 0) are complex conjugates. With increas
ing phase a, the trajectories of the upper half plane 
go over to the first quadrant, and the trajectories 
of the lower half-plane always remain in the third 
quadrant. When the energy becomes positive 
(a = 1r /2), the trajectories go off to infinity parallel 
to the real axis. 

We conclude the study of the Regge-pole trajec
tories by constructing an over-all picture of the 
motion of all the poles, both as a function of the 
coupling constant g and as a function of the energy. 
We take an infinite number of sheets of the v plane 
and renumber their indices, in steps of one, from 
-oo to +oo (Fig. 6). On all sheets with p ~ 1 we 
place only the threshold-condensation trajectories, 
and on the main sheet with p = 0 we place only the 
trajectory of the first bound state, frequently 
called the leading trajectory. On the sheets with 
p :::s -1 we place trajectories of both types. The 
bound-state trajectory on the sheet with p = - N 
begins at some point v = vN(O) and ends at the point 
v = -1/2 - N. Although the surface constructed in 
this manner is not a Riemann surface of the func
tion K(v, g), which is the inverse of v = v(K, g), it 
nevertheless presents a clear picture of the charac
ter of the motion of all the poles . 

FIG. 6 
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5. DISCUSSION OF RESULTS 

We have investigated the behavior of the Regge 
poles as a function of the energy, for a potential of 
the Coulomb-well type. The Coulomb-well potential 
coincides with the Coulomb potential at small dis
tances and cuts off like a square-well potential at 
large distances. We note that the Yukawa potential, 
which is of greatest interest from the physical 
point of view, has in principle the same dependence 
on r as the Coulomb-well potential, but of course 
there is the difference that at large distances the 
Yukawa potential falls off more slowly, exponen
tially. Therefore, for example, the positions of the 
first levels and some other physical quantities are 
nearly equal in both potentials. Mathematically, 
however, the Coulomb-well and the Yukawa poten
tials are far from equivalent. Whereas the 
Coulomb-well potential leads to a solution of the 
Schrtjdinger equation in analytic form, the solution 
for the Yukawa potential cannot be expressed in 
terms of any known special functions. In addition, 
both potentials (and incidentally any other potential) 
can claim only an approximate physical description 
of the interaction . Therefore it is convenient to 
use the Coulomb-well potential in lieu of the Yukawa 
potential when describing the interaction in various 
physical problems. The difference in the physical 
results obtained on the basis of the two potentials 
is slight. For example, the conditions for the ap
pearance of the IS level in these potentials are 
respectively gr = -1.65[ 8] and gr = -1.45. We note 
that, as follows from the foregoing analysis, the 
non-analyticity of the Coulomb-well potential intro
duces no mathematical complications. 

We note that the Coulomb-well potential is more 

diverse in its analytic properties than the square
well potential. For example, at high energies a 
Coulomb-well potential has Regge poles at the half
integer negative points v = l + 1/2, unlike the 
square-wave potential. This is connected with 

· different behavior of the potentials at short dis
tances. At low energies k - 0 there exist bound 
states in a Coulomb-well potential, while in a 
Coulomb potential these bound states go to infinity, 
owing to the slow decrease of the Coulomb poten
tial as r __,. 00 • 

We see therefore that consideration of a 
Coulomb-well potential serves as a good illustra
tion of the general properties of Regge-pole trajec
tories. 
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