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The influence of an electric current in a semiconductor or semimetal on the magnetization of 
the electron and nuclear spin subsystems is investigated. Two mechanisms for the interac­
tion of the conduction electron spins with the lattice are considered: interaction with acoustic 
and with optical phonons. The spin relaxation time of the conduction electrons, associated 
with their interaction with optical phonons, is calculated for equilibrium and for "hot" elec­
trons. It is shown that the interaction with optical phonons may be the principal mechanism 
in the establishment of nuclear and electron polarization. 

IT is well known that in a semiconductor or 
semimetal in the presence of a temperature dif­
ference of the electrons-spin temperature Ts 
and kinetic temperature Te-the magnetization of 
the nuclear subsystem differs from the equili­
brium magnetization corresponding to the temper­
ature of the lattice. For example, in the Over­
hauser effect the difference between Ts and Te 
is achieved by saturation of the electron spin 
resonance. Feher [t] and Feher and Clark [2] pro­
posed and experimentally verified another scheme 
for nuclear polarization. Here the difference 
Te - Ts is achieved by heating the conduction 
electrons by a direct current. In this connection, 
as a consequence of the spin-lattice relaxation the 
spin temperature may differ from the kinetic tern­
perature. In the present article we consider sev­
eral mechanisms for establishing a difference 
between spin and electron temperatures, and also 
the resulting nuclear magnetization of the system 
in the presence of drift and heating of the electron 
gas. 

1. Let us consider a system of nuclear spins 
interacting with the conduction electrons. For 
simplicity, let us assume the nuclear spin is equal 
to %. The Hamiltonian for the magnetic interac­
tion of nuclear spins with conduction electrons 
has the form L3J 

;;e1 = AIS6(rs- n ), (1) 

where S is the electron spin, I is the nuclear 
spin, rs is the electron coordinate, and r1 is the 
coordinate of the nucleus. Here the nonsecular 
part of the interaction is omitted, it is usually 
negligibly small for conduction electrons having 
s-type wave functions. 

The equations for the rates of change of the 

nuclear subsystem level populations have the 
form 

dN_ I dt = -N_W(+-J--++J + N+W(-+J-><+-J. N_ + N+ = 1, 

w(+-)-+(--+) = ~rt ~I< +-13ft!-+> )2 I+ (p+) 
pp' 

(2) 

where N'~' are the relative populations of the nu­
clear subsystem levels with lz = =F Y2, I - +) is 
the state corresponding to Sz = - 'l'2, lz = Y2, 
f± ( p) are the distribution functions of the elec­
trans with spin Sz = ± Y2, We+-)_ e-+) and 
We_+) _ e +-) are the probabilities of simultaneous 
reversal of the electron and nuclear spins (it is 
easy to see that only such transitions are allowed 
for an interaction of the type (1)); {3 is the Bohr 
magneton, H0 is the external magnetic field. 

We note here that the simple description of the 
kinetics of nuclear spins given by Eqs. (2) is valid 
under the condition that the Zeeman energy of the 
nucleus is greater than the energy of the magnetic 
interactions of the nucleus giving rise to the 
width of the nuclear resonance line, which is 
usually satisfied in experiments on nuclear polar­
ization. 

Let us determine the stationary value of the 
nuclear magnetization associated with the pres­
ence of an electric current in the system of con­
duction electrons. In order to determine the 
functions 4 ( p ) it is necessary to solve the 
kinetic equations for the conduction electrons, 
with heating of the electron gas taken into ac­
count. Such a problem, without taking the spin 
and spin-orbit interaction of the electrons into 
consideration, has been investigated by a number 
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of authors in the theory of nonlinear galvanomag­
netic phenomena. 

One of the methods frequently applied here is 
the method of "effective parameters." The non­
equilibrium distribution function is approximated 
by the equilibrium distribution in a system of co­
ordinates moving with the average velocity of the 
electrons, and by an effective electron tempera­
ture Te which is different from the lattice tern­
perature. This approximation is admissible for 
sufficiently large electron -gas density. It is pos­
sible to take account of the spin and spin-orbit 
interaction in this scheme, using then the fact that 
the frequency of collisions of electrons with 
scatterers without spin flip is usually several 
orders of magnitude larger than the collision fre­
quency with spin flip. Therefore, one can assume 
that both subsystems in the drifting coordinate 
system have identical temperatures, but different 
chemical potentials. We note that essentially the 
same approximation is used for consideration of 
electron spin resonance and the Overhauser effect. 

Thus, the electron distribution functions have 
the form 

{ e(p-mv)+l1.-{;±}-i (3) 
f±(p)= 1+exp T. , 

where ~e = gJ3H/2, g is the gyromagnetic ratio 
of the electron; Ve, Te, and {;± are functions of 
the electric current in the system. It is easy to 
see that 

z N -N 1 ('V , I stat~ - 2 + =z LJ{/_(p )[1-j+(p)]-j+(p)[i-/_(p')J} 
pp' 

X6 (eP+ -ep_·-2.1N))(~ {/_£p') [1- /+ (p)] + /+ (p) 
pp' 

X [1- /_ (p')J} {j (eP+- fp_•- 2.1N) t1 · ( 4) 

Let us assume that {;± = ~; 0 ± 6. Expanding (4) in 
powers of 6/Te, ~N/Te, and mv2/2Te, and also 
using the condition ~e/Te « 1, we obtain with 
the aid of standard calculations, to the lowest 
order approximation in the parameters mentioned 
above, 

mv2 

s' = s ---=-, 
3e 

- { T, 
e= so, 

Jz(O) = 2,1~' 

so/T~-1, 

so/T'?> 1, (5) 

where 'Y e and 'YN are the gyromagnetic ratios of 
electrons and nuclei, TN is the lattice tempera­
ture, s = 6/ ~e is the electron paramagnetic 
resonance saturation parameter. The latter is 
related to the spin temperature of the electrons 

and to the average electron magnetization by the 
relations 

s = (Sz(O)- S'z(j)) I Sz(O), T., = -T.I (1- s), 

where sz ( 0) and sz ( j) are the equilibrium (for 
Ts = Te) and, respectively, nonequilibrium values 
of the average electron spin, T s is the temperature 
of the spin subsystem, Te is the temperature of 
the electrons. 

In semiconductors it is often necessary to 
consider, besides the contact interaction of the 
nuclei with the conduction electrons, also other 
relaxation mechanisms, for example, the interac­
tion with paramagnetic impurities. In this case it 
is necessary to take the "leakage" of nuclear 
magnetization, caused by these additional interac­
tions, into account. Let there be an additional 
relaxation mechanism with relaxation time Tf, 
tending to establish a magnetization equal to the 
equilibrium value It; then the stationary value of 
the nuclear polarization is determined by the rela­
tion 

!'(j) = T:y_(t- r.s')t+1-f, 
!' (0) Te YN 

f = -r/ I (-r/ + T!) 0 
(6) 

This relation is easily obtained from the equation 
for the nuclear level populations in the presence 
of two relaxation mechanisms. [2] We note that in 
our approximations the electron drift does not 
directly influence the nuclear polarization. 

2. Since "s « "e ( "s and "e are the frequen­
cies for collisions of electrons with scatterers 
with and without spin flip), then one can determine 
Te (j) and v (j ), as this is usually done in the 
theory of nonlinear galvanomagnetic phenomena, 
by neglecting the spin. Te and v strongly depend 
on the mechanisms for the scattering of momentum 
and energy of the electrons, on the magnitudes of 
the magnetic and electric fields, on the angle be­
tween the magnetic and electric fields, and on the 
boundary conditions. One can, for example, find 
an examination of these questions in the article 
by Bass.CsJ 

Let us consider the establishment of s for 
given Te and v. It is well known that the basic 
mechanism for relaxation of the conduction-elec­
tron spin is scattering by acoustic phonons, with 
the spin-orbit interaction taken into account; in 
this connection relaxation of momentum and 
energy may be accomplished by other mechanisms 
as well (for example, the momentum may relax 
through the impurities). The parameter 6 (or s) 
in the distribution functions (3) is determined 
from the steady state condition for Mz ( t) 
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( z II H), where Mz is the density of the spin 
angular momentum of the electron gas. 

It is possible to obtain an equation for Mz 
from simple considerations of the conservation of 
spin density during collisions: 

Mz = g~ ~~(a- a') wkGk+qa' {(Nq + 1) 
aa' kq 

x/a'(k + q) [1-/a (k)] -Nq/a (k) [1-/a· (k + q)l} 

(7) 

where Nq is the distribution function of the pho­

nons with quasimomentum q, ~~a' is the proba­
bility for the transition of an electron from the 
state I ku) to the state I k'a'). It is also possible 
to obtain this equation from the Boltzmann equa­
tions for 4 ( p ), multiplying them by ug{3/2 and 
summing over u. [6] 

In order to calculate s, it is sufficient to know 
the dependence of w~;q,u' on k and q. In con-

trast to the probability for a transition without 
spin flip, the probability for a transition with spin 
flip strongly depends on the energy spectrum of 
the crystal, on the symmetry of the crystal under 
space reflection, on the position of the bottom of 
the conduction band in the Brillouin zone, and so 
forth. For the simple case when the bottom of the 
conduction band and the top of the valence band 
are located at the center of the Brillouin zone 
( InSb, in which Feher and Clark [2] observed nu­
clear polarization, has just such an energy spec­
trum), Yafet [?] showed that the transition proba­
bility is given by 

lrkak+q,a' ,._, {I q [, a= a'' 
jk+k'[2 [q[3 , a=f=a'. (8) 

We note that in a number of articles [S, 8] a value 
of the transition probability equal to I k + k' j 2 

lql- 1 was used to calculate of electron and nu­
clear polarization. This result, obtained by 
Elliott [s] is incorrect, [7] since Elliott takes the 
spin-orbit interaction into account only in the 
wave functions, but he does not consider it in the 
electron -phonon interaction energy. 

Now let us deduce the solution of the trans­
cendental equation (7) for a nondegenerate elec­
tron gas. We shall seek the solution 6 in the 
form of a series in powers of the small parameter 
)' = ( mcij/Te )112 ; for example, for InSb the value 
of me~ ~ 10-2 •K. In this connection, ~e/Te and 
mvo/Te are assumed to be small. Expanding (7) 
in a series in powers of /' and collecting terms 
of like order, we obtain with the aid of standard 
but tedious calculations the following result for 

an electron gas subject to Maxwell-Boltzmann 
statistics 

8 :::::::: mc02 {i (.!!_)2 
Te 3 Co 

-v mco2 31~( Te -1) ( 1-_1_( .!!_ r)}: (9) 
T e T p \ 4 \ Co 1 • 

c0 is the velocity of sound in the crystal, Tp is 
the temperature of the phonons. We note that in 
articles [s, 8J strongly overestimated results cor­
responding to s ~ /' are obtained. 

For a degenerate electron gas the saturation 
parameter s, correct to coefficients of the order 
of unity, has the same form as in Eq. (9), only in 
this case the small parameter '}' is replaced by 
( mc~/1;0 )112 (to is the Fermi energy). We see 
that both in the degenerate case as well as in the 
non-degenerate case, s is much smaller than 
unity. Taking account of the nonequilibrium of 
the phonons (phonon drag and heating) still fur­
ther decreases this quantity. [S] We note that the 
same order of magnitude result is obtained for 
an examination of piezo-acoustic scattering, which 
may be essential for the scattering of hot elec­
trons in InSb at 4.2 •K. [10] 

3. From formula (9) it is evident that the 
saturation parameter s is proportional to the 
square (or to the cube, if v/c0 ~ 0) of the ratio 
of the energy transferred by the electron to the 
phonon during a collision to the average electron 
energy. If the inelasticity of the scattering is 
neglected, then s vanishes. During the collision 
of an electron with an optical phonon, the electron 
emits or absorbs an energy quantum fiw 0 appreci­
ably larger than for a collision with an acoustic 
phonon. This suggests that the interaction with 
optical phonons may lead to a large nuclear polar­
ization. 

The Hamiltonian for the interaction of conduc­
tion electrons with optical phonons has the form 

eh 
3fep =- e<D --- (a[VtD p]) (10)* 

4m2c2 ' ' 
where in standard notation e.P has the form [11] 

<D • 2:rtze2 M 1 + M 2 ~ (nq1·q) ( . • · - e = l --- . LJ -- a ·e'qr- a · e-tqr) 
as~rN ~rM M . q2 qJ qJ • r r 1 2 q) (ll) 

The second term in Eq. (10) describes the change 
in the spin-orbit energy of an electron due to the 
lattice vibrations. 

The matrix element determining the transition 
probability is given by 

* [ 'V!l>, p] o; \lq, X P· 
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(Nq'k'o'J :1tep jNqko) = ~ Cq (Nq'l aq- a_q• / Nq) 
q 

X (k'o' J eiqr ( 1 + i:::c2 (a [qp])) 1 ko); (12) 

C . 2:n:ze2 M 1 + M2 1 (13) 
q = ~ a3 YN VM1M2 q ' 

.111~?0, = (k' a' I eiqr ( 1 + 4~~c2 (a [ qp])) I ko) 

1 \ . ·' . • iqr ( 1 ieli ( )) ikr a . = N ~e-•k•unk'o'e + 4m2c2 a [qp] e Uni;o I 

~ 1\k'-k-q,o \ u~k'o' (r) ( 1 + 41~2~2 (a [qpl)) Unko (r) dr. 
~ (14) 

In Eq. (13) the integral is to be evaluated over the 
volume of the crystal, in Eq. (14) it is over an 
elementary cell. Unka ( r) is the Bloch amplitude 
of the wave function with the spin-orbit interac­
tion taken into account. In going from Eq. (13) to 
Eq. (14) we have neglected Umklapp processes. 

The integral in Eq. (14) is a function of k and 
k'. This function determines the spin relaxation 
in the crystal. In the same way as in the acoustic 
scattering case, it depends essentially on the en­
ergy spectrum of the crystal. Let us consider the 
behavior of the integral (14) for the simple case 
when the crystal has a center of inversion and 
the bottom of the conduction band and the top of 
the valence band are located at the center of the 
Brillouin zone. The maximum electron energy is 
appreciably smaller than the width of the forbidden 
gap. Such a situation occurs, for example, in 
InSb.o 

We expand the integral (14) in a series in 
powers of q = k' - k and K = (k' + k )/2. For 
calculations we can confine ourselves to the first 
nonvanishing term of the series, since this series 
converges rapidly. In fact, in the expansion of the 
integral (14) with respect to the quasimomentum, 
k · p perturbation theory gives for each power of 
K or q a factor of the order of liP/mEg (or 
smaller), where P is the interband matrix ele­
ment of the momentum and Eg is the width of the 

forbidden gap. Usually l'iPk/mEg is a small 
quantity.C12J We have 

( • ieli ) R (Kq) == UK+q/2,ol 1 .;- 4m2c2 (a [qp]) I Ur;:-q/2,-o 

= a0 (K, 0) + ~ q;b; + ~ q;Kidii +... (15) 
i ij 

In what follows we shall omit the band index on 
the functions Unka ( r). 

1)Although the InSb crystal is not invariant under reflec­
tion of the coordinates; however, in this case the noninvari­
ance plays a small role in spin relaxation (see [7]). 

The first two terms in the expansion (15) are 
equal to zero. It is possible to prove this in 
general form by using the properties of the Bloch 
amplitudes under the operations of time reversal 
and space reflection. We introduce J -the oper­
ator for reflection of the coordinates, and 
K = -iayK0-the time reversal operator. [12] Then 

(16) 

Taking account of the identity 

(17) 

(correct to within a phase factor) and 

K2 = -1, C2 = -1, (18) 

we obtain 
(uKo, llK,-o) = (uKo, CuKo) = (C2uKo, CuKo) 

=- (uKo, UK; -o) = 0, (19) 

ieli ( I I } -f- 4m2c2 ( Uo,o p Uo,-o), 0); . 

Considering that Cpjc- 1 = Pj = (Pj )*,we obtain 

(uoaPJUo, -a) = (uoapjCUoa) = (Cp/-'uoa, Cuoa) 

= (CpjC-1C2uoa, Czzoa) = (C2uoa, [JjUo, -a) 

=- (uoa[JjUo,-a) = 0. 

We expand uK,a in powers of K: 

liKo = U0o + ~K;u0(l) (r) + ... 

Considering that 

(20) 

(21) 

(22) 

(23) 

apart from a phase factor which is not important 
here, we obtain 

U"Ka(- r) = Uoa(l')- ~ K;U;a<1l(r) + ... = Uoa(- r) 

(24) 
i 

From here we see that u~1 l ( r) and u0a ( r) have w 
opposite parities under space reflection. Then 

(u;,,(ll(r), uo, -cr(r)) = (u;a<1>(-r), 

Uoa(-r)) = (u;a<1>(-r), Uoa*(r)) = 0. (25) 

Similarly 

( Uoa(r),( 0:~: L=o) = 0. 

And so, from Eqs. (19)-(21) we have 

R(K, q) = ~ d;iKiqj. 
ij 
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One can calculate the constants dij by using k · p 
perturbation theory. However, for our purposes 
we can neglect the angular dependence of the 
function R ( K, q) which is unimportant for calcu­
lation of the electron polarization and may give a 
factor of order unity in connection with the calcu­
lation of the electron spin relaxation time. There­
fore we set 

R(K, q) s=: dKq, (26) 

where in order of magnitude d is equal to 
6gn2/m0Eg (here og = I g - 21 may be appreciably 
greater than unity), [S] m 0 is the free electron 
mass. 

Taking into consideration that [ti] 

<Nq'jaq!Nq)= [ 2(Mln:.M2)wq rC\Nq',Nq-r. 

(27) 

we obtain the following expressions for the proba­
bilities of absorption and emission of a phonon per 
unit time: 

TTf+k'o' ( N nkcr =W q) qb(ek+q,a•-8ka+liwq), (28a) 

Wk~·a· = w (q) (Nq + 1) C\ (ek-q,a'- eka + liwq), (28b) 

(2n)3z2e4 Ji4K2 Ji4 K2q2 
w (q) ~ N 6 (C\g)2 -2-2 = wo (g) -2-2 (C\g)2. (29) 

~ta Wo m0 Bg m0 Bg 

Here fJ. is the reduced mass of the ions, w0 ( q) is 
the function determining the probability of the 
transition (28) without spin flip. 

4. Now let us evaluate the electron polarization 
parameter s. We return to Eq. (7). The electron 
distribution function has the form (3). In Eq. (7) 
we change over to new integration variables 
p - mv - p, p' - mv - p'. Then 

llfz = g~ ~ ~ <~- a')i»t~q,a' {(Nq + 1) Ia· (k) [1- Ia (k)J 
ocr' kq 

- .Vqla (k) [1- Ia• (k + q)]} (\ (ek+q,o'- B~a -nwq*); 

(30) 
here 

/iwq* = liwo + liqv = 1iwo(1 + qv / wo), 

w (K, q) = w(K, q) 11 + mvk / /iK2j 2• 

We shall not take the dispersion of optical pho­
nons into consideration. 

It is easy to see that in the case of optical pho­
nons one can, to a first approximation, neglect the 
drift of the carriers for v ~ c 0 over a wide tern­
perature interval. In fact, 

n.qv ~ _!!_ (! c; e )'/, ~ 1' 
liw0 c TD b e ye 

since 

T cr ~ mc2 ~ (10-2 - 1)° K, TDebye= liwo ~ 102 °K, 

Similarly 

mvk v ( Tcr )'/, -=- --=- ~1. 
1ik2 c 8 

In order to solve the transcendental equation 
Mz = 0, we assume that o/Te « 1. This is a 
natural assumption since Eq. (7) is valid under 
the condition b.e/Te « 1. Expanding (30) in 
powers of 6/Te and confining our attention to the 
lowest-order approximation, we obtain 

s =- L\ {~ ~ <~- ~') w (k, q) (Np-Ne) Uo (eka + nwo) 
crcr' kq 

-I 0 ( 8ka) 1 (\ ( Ek'o'- 8ka- liwo)} { ~ ~ ( ~ -a') w (k, q) 
em' kq 

X [a' "'D/o (Nq + 1- lo (eka))- a :/o (Nq +I (ek'a•))] 
U8k'o' u8ka 

. ( tiwo ) Np,e= i\o ~ • 
p,e 

(31) 

where Tlat is the temperature of the lattice. 
We note that s does not depend on the numeri­

cal factor in the matrix element (26). The calcu­
lation yields 

8 = _ ~ liwo [No ( li'wo ) _No ( li~o )] '); 1 ( liwo, z) 
2 Te \ 1lat . ', 1 e T" , 

_ 1 ( liwo 1iw0 ) 
Xljlz -T ,z,-T , 

e lat 

( liwo \ r [ ( h(o)Q ) J ¢1 - 1-,-. z I=.\ dx fa(x-z)-fo x+-.--z 
\ e ! 0 \ 1e 

( hwo )-'/,( hwo ) 
X 1 + T.x 1 + 2T.x ' (33) 

( liwo liwo ) = f d [ i3fo(x + ftwo/Te- z) 
ljl2 1' , Z, 1' .\ X fj . 

\ e !at 0 X 

X (No ( _!!_wo_) + 1- fo(x- z) ) 
· ' Trat · 

+ ofo(x- z) [No ( ftwo J+ tl x + ftwo _ z)] 
OX Tlat . (\ Te 

x( x2+ ftwo x)'J.(x+ ~wo ). 
, T. 2Te , 

(34) 

Let us consider certain special cases. 
A. Nondegenerate electron gas. a) For 

nw0/Te » 1 and nw 0/T1at » 1 we have 

s=-
1 - exp [ftwo( 1/T. ---.,1/Ttat)] 

1 + exp[1iwo(1/T. -1/'IJat)]' 

(35) 
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for ( nw 0/Te )[ ( Te/Tlat) - 1] « 1 we have 

nwo ( Te ) 
S=-2Te Tlat- 1 ' 

and for nw0/Tlat » nw 0/Te we find 

s = -1. 

Since nw 0!rlat and nw0/Te are appreciably 
greater than unity, this case may be realized 

(36) 

(37) 

for a comparatively small difference between Te 
and Tlat• namely 

Te/Tlat-1~Te/nwo~l. (38) 

b) In the case nw 0/Te « 1 and l'iwo/Tlat « 1, 
we obtain 

s = - ~ ( .!!~ )2 
( _!e_ - 1 ) . 

'± Te Tlat 

c) For nw 0/Te « 1 and nw 0/ Tlat » 1, we 
have 

1 
s =- -nwo/Te. 

4 

B. Degenerate electron gas ( z » 1 ) . 
a) For nw0/Te » 1, nw 0/ Tlat » 1, and 

z » nw 0/Te we have 

s= 

- ~ ( fl(!)o ) 2 nwo fzulo 
4 ~o Tlat~ J.'; ' 

(39) 

(40) 

_ ~ ( _fl~uo__)' 2 _tz_~u~ ('_T_,e_. _ 1 J' 
8 , ~0 1 e 11at ' 

' 1 1 ) 
fzwo(--- ~1. 

· Tlat Te ' 

b) For nw0/Te » 1, nw 0/Tlat » 1, and 
z « nw0/Te, we have 

hwo 
-1, --~1, 

Tlat 
S= 

(41) 

- _h~~~ ( :~:t- ;, I, ( 1 1 \ 
nwo ---) ~ 1. 

\ Tlat Tc · 
(42) 

These results show that in all limiting cases 
optical phonons give a considerably larger elec­
tron (and nuclear) polarization than acoustic 
phonons. This result has a simple physical inter­
pretation. Let us consider, for example, the case 
nw0 » Tlat• Te· In this case Nq « 1; therefore, 
processes involving the spontaneous radiation of 
optical phonons by "hot" electrons are dominant 
in the interaction of electrons with optical phonons. 
Here the following two processes accompanied by 
spin flip are possible: ( Ek' + I - ( Ek - I and 
( Ek' - I - ( Ek + I (see Fig. 1), for which the 
energy conservation law has the form 

tk' - tk = fz(!)o - 2L'.e, 

tk' - tk = fzwo + 2L'.e. 

(43a) 
(43b) 

(I} 

Electrons with energies E ==: nw 0 - 2~e and 
E ==: nwo + 2.6-e, respectively, may participate in 
processes of the type (43a) and (43b). Since the 
number of electrons with energies E ==: nw 0 - 2~e 

is greater than the number with energies 
E ==: nw0 + 2~e• then processes of type (43a) occur 
more often than processes of type (43b) (see Fig. 
2). Processes of type (43a) increase the electron 
polarization. This effect must increase with in­
creasing ~e/Te and nwq/Te. 

We note here than in contrast to the Overhauser 
effect where the saturating radio frequency field 
increases the spin temperature of the electrons in 
comparison with the kinetic temperature and de­
creases the magnetization, in the effect on the 
''hot'' electrons the spin temperature is lower than 
the temperature of the electrons and, correspond­
ingly, the electron magnetization is increased 
(although it is less than for Te = T1ad· A 
directed drift of the electrons, in contrast to their 
heating, increases the spin temperature of the 
electrons. 

5. In order that the interaction with optical 
phonons may actually lead to a large electron 
(and nuclear) polarization, it is necessary that the 
spin relaxation time of the conduction electrons 
by optical phonons should be comparable with the 
spin relaxation time caused by other mechanisms, 
or smaller than it. The investigations of Over­
hauser, Elliott, Yafet, and others have shown that 
in semiconductors, over a broad range of temper­
atures and impurity concentrations, the dominant 
mechanism for conduction electron spin relaxa­
tion is relaxation by acoustic phonons (relaxation 
by optical phonons was not considered). The con­
ditions under which relaxation by optical phonons 
may be essential will be shown below. 

It is easy to obtain a formula for the relaxa­
tion time from Eq. (7) by substituting in it, as 

'hw0 -2J1.e liw0 +2/Je e 

FIG. 2 
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usual, the distribution function f ( p, u) in the 
form f [ ( Eku - l:u )/T e ] . Expanding Eq. (7) in a 
series in powers of ( ?;u - l:o )/Te = -uo/Te and 
t.e/Te, it is easy to reduce it to the form 

· Mz-Mo Mz = - _:___ _ _::_ 
1'1 

where T 1, according to definition, is the longitud­
inal relaxation time of the conduction electron 
spin. Having carried out this procedure, we ob­
tain 

__!__ = ~ ~ {<o- o') I w~~q,o' [ [o 0°/ (Nq + f (ek·a·)) 
't'l aa' Kq Bka 

x{2;~(o 2o') 0 ;:0 }-
1

• 
aa' kq k 

(44) 

where nwq = nwo, and we neglect the dispersion 
of the optical phonons. 

It is convenient to study not the spin relaxa­
tion time proper, but the ratio of the relaxation 
time T 0 without spin flip to the relaxation time 
with spin flip, since the relaxation without spin 
slip has been rather well studied. We shall define 
the relaxation time without spin flip in the follow­
ing manner: 

Here T 0 ( E ) is a relaxation time approximating 
the collision integral in the Boltzmann equation. 
We note that, for optical phonons, such a definition 
is possible only in two limiting cases: 

(46) 

Using formulas (34) and (28c), carrying out the 
integration with respect to angles and with re­
spect to the modulus of q in Eq. (44), we obtain 

1 4nz2 e4 (m*) Te' 12 • 2 --- = ---=- (og) 
T1 Y2 fla 3nwomo2 roi 

( nwo nwo \ I r . a 
X\jl2 --,z,--1 .l dx-xh-fo(x-z). 

._ Te Tlat; 0 OX 

Let us consider certain limiting cases. 

(47) 

High temperatures ( Te » nw 0, Tlat » nwo ). 
The relaxation time of the conduction electrons, 
associated with scattering by optical phonons 
without spin flip, is given by the expression [11] 

yZ [la3 (flwo)2ro'/, 
To (e) ~ - ---:----:--:----:----;-;-=-

4n z2e4 (m') 'lzTlat. 
(48) 

For the equilibrium system ( Te = Tlat) the 
ratio T 0/T 1, as one can easily see, is given by 

To 
8 ( :: r ( og) 2 ( :; r. 
2 ( :J\og)2 ( ;:r. 

z<-1, (49a) 

(49b) 

(Eq. (49a) is for Maxwell-Boltzmann statistics, 
Eq. (49b) is for Fermi-Dirac statistics). 

Low temperatures ( nw 0 » Te, Te = Tlat ). We 
have 

z<-1, 

nwo 
1<z < T' (50) 

e 

Let us compare the obtained results with the 
electron spin relaxation time associated with 
scattering by acoustic vibrations. Yafet [T] showed 
that 

Toac (m*\2 (e)2 
-~ - I (og)2 - , 
T 1 ac mo : \ eg 

e={Te, z<-1, (5l) 
~o, z~ 1. 

Using (48) and (49), we form the ratio of the 
spin relaxation times for scattering by acoustic 
phonons and by optical phonons: 

, 1 ac , 0ac 

~P ~ Toop' 

I 
Toac ( flwo r z<-1 and 

liwo 
1<z<----r,;-, 

, 1 ac To0 P Te ' 
,,op Toac ( flwo 1 •;, fiwo 

(53) 
To0 P ' ~o / ' 

z~r· 
e 

Relations (53) indicate that at low temperatures 
the relative role of optical phonons in spin scat­
tering increases. 

Formulas (49)-(53) are obtained under the 
assumption that the electrons are in equilibrium 
with the phonons. One can take the effect on the 
electron spin relaxation time of heating the elec­
trons relative to the lattice into account by using 
formula (47). In fact, the ratio of the spin lattice 
relaxation time in the equilibrium system 
( T e = Tlat) to the relaxation time in the non­
equilibrium system ( Te ,._ Tiat ), taken at one 
temperature equal to Te, is given by 

1'!0 P(Te, liat= Te) \jl2(nwo/Te, z, fiwo/'fiatl_ 
= --------- = y. 

-r,0 P(Te, li.at=l= Te) \jlz(nwo/Tc, z, ncuo/Tc) 

In the case of low temperatures, Te « nwo, 
this ratio is given by 

y = - 1 + exp - nwo (-- -- I . 1 { [ 1 1 : ]} 
2 Tlat Te 

(54) 

(55) 
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It is easy to see that even for relatively small 
heating, ( Te/Tlat> - 1 » Te/l'iw0 « 1, the 
parameter y attains its own minimal value 
y = V2. 

For high temperatures ( l'iwo < Te, l'iwo < T!at) 

Y = Ttatf T.. (56) 

From formula (44) it follows that for acoustic 
phonons when T » Tcr =me~, Nq will be ap­
proximately equal to T!at/l'ic0q » 1, and there­
fore 

1 I T1 = Tlat(jl (Te). 

Then it is easy to form the ratio of the spin re­
laxation times for acoustic phonons, analogous to 
relation (54): 

Tt 8 c(Te, Tlat = Te) _ Tlat 

T!ac(Te, Tlat=F Te) - Te. 

We see that for appreciable heating 

(57) 

( T e » Tlat) the spin relaxation time by optical 
phonons is double the equilibrium relaxation time, 
whereas for acoustic phonons it may be consider­
ably larger than the equilibrium value. Thus, 
relations (54), (56), and (57) indicate an increase 
of the relative role of the optical phonons in spin 
scattering (at low temperatures) in nonequilibrium 
systems too. 

6. In order to estimate the dependence of the 
nuclear and electron polarizations on the electric 
field, sometimes it is necessary to consider 
several mechanisms for the spin-lattice relaxa­
tion of the conduction electrons. For example, in 
the presence of both acoustic and optical phonons, 
the saturation parameter s is given by 

S = S8 c(1- £) +SopS, 
£ = Ttac I (r:top+ T!ac). 

(58) 
(59) 

Since sac is usually very small, for comparable 
values of Trc and T?P the parameter s is de­
termined by the second term in (58). The depend­
ence of Iz ( j )/Iz ( 0) and s on the electric field 
has a complicated form and is determined by 
formulas (6) and (32) and by the dependence of the 
effective temperature on the electric field. It is 
possible to approximately determine the depend­
ence of the parameter ~ on the effective temper­
ature Te from relations (54), (56), and (57) (for 
z < l'iw 0/Te ): 

£ = [A ( ~:o ) -'f, exp ( li;"o ) + 1 rl' 
where A is a constant approximately equal to 

2Ttat To0 P(Tnebye) 
----- (60) 

liwo 'to ac( T De bye) 

In the region Tlat « l'iw0, the electron polari­
zation reaches its maximal value for Te 
- (% )l'iw0• The nuclear polarization also has a 
maximum in this region of temperatures and in 
order of magnitude amounts to 

(61) 

At present there is still too little experimental 
data known for one to be able to make a detailed 
comparison of the calculated results with experi­
ment. In the experiments of Clark and Feher on 
InSb, an increase of the nuclear polarization of 
In115, Sb121 , and Sb123 by approximately 10 to 100 
times was observed in fields up to 1 V/cm.[2•13J 
The electron temperature reached 20 to 50°K. [4] 

Under these conditions, the acoustic phonons lead 
to a polarization of the In115 nuclei on the order of 
1.2 to 1.5 ( ?;0 ~ 60°K ). Consideration of the op­
tical phonons apparently may explain the observed 
value of the nuclear polarization. However, it is 
impossible to make a quantitative comparison with 
this data, since the experiment was carried out in 
a magnetic field of 12,000 Oe, which corresponds 
to .6.e 2:, T e . 

I wish to express my sincere gratitude to 
P. S. Zyryanov and V. P. Silin for discussion and 
valuable comments. 
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