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A formal equation is derived for the "halved" S-matrix in quantum field theory, satisfying the 
integrability condition. For the example of a self-interacting, renormalizable scalar field ex­
pressions have been obtained for the Heisenberg field operator and its derivative. Medvedev's 
equations for the Heisenberg "current-like" operators are solved. 

1. INTRODUCTION 

THERE has been a recent tendency in papers on 
axiomatic quantum field theory[i, 21 to utilize con­
cepts from different systems of axioms, [ 3• 41 and 
also to resort, within reasonable limits, to appara­
tus appropriated from the Lagrangian formalism. 
At the same time it has been impossible to carry 
through this program consistently, [ 1' 21 due to the 
fact that a non-unitary relation was found ( cf. also 
[ 5• 6 ~ between the operators in the Heisenberg pic­
ture and those in the asymptotic (more correctly, 
in the in-) picture: 

F(x) = S+Tw(ff;n(x)S), (1) 

where Tw is the Wick T-product. [ 1• 2• 61 Our in­
vestigation has the purpose to show that the pro­
gram proposed by Medvedev[i, 21 can be success­
fully realized if one makes use in addition to the 
Lagrangian formalism also of concepts from the 
Hamiltonian formalism, in particular its main 
quantity, the "halved'' S-matrix. 

In previously published papers [ 61 the following 
formal expression for the "halved" S-matrix has 
been introduced: 0 

C1 

S( a, -co)= T D exp { -i_t Hrint(z; a') rlz}, (2) 

where TD is the Dyson T-product, [ 1• 2• 61 and 
Hint(z; a) is the interaction Hamiltonian. By means 
of this expression one can circumvent the non­
unitary character of relations of the type ( 1), by 
introducing in the interaction picture an operator 
;t mt(x; a) which is a unitarily related to the Hei­
senberg operator F(x). Specifically, we have, [ 61 

F(x) = S+(a, -oo)§'int(x; a)S(a, -oo), (3) 

l)ln the following we choose for a the plane x0 ~ const. 

where in general ;t int(x; a) =F ;t in(x), although of 
course ;yint(x; a) is also a polynomial in normal 
products of the field operators <Pin(x) and their 
derivatives. 

The transition from ( 1) to ( 3) can be realized 
by making use of a previously derived analog of 
Wick's theorem, [ 61 which allows to express the 
Tw-produ<?t in terms of Tv-products and by first 
defining Hint(x; a) according to the identity[ 61 

S = Tw exp {i r Lrin (x) dx} = Tn exp{ -iS JJin1(z; a) dz }. 
-00 -00 

(4) 

Expressions of the form Tn( ;t in(x) S) have to be 
understood in the sense that the S-matrix itself is 
expressed in them in terms of Tv-products, i.e., 
the integration region in this expression can be 
decomposed into an infinite number of "time­
slices." 

It is natural that the first problem that arises 
is that of the mathematical significance of a ma­
trix S(x0, -oo) of the form (2). Recently the point 
of view[ 7 • 81 according to which the "halved" S­
matrix is not a properly unitary operator, but a 
"pseudounitary" or "improperly unitary" opera­
tor has been widespread. This has the following 
meaning. [ 61 

In distinction from the total S-matrix, which is 
a truly unitary operator in the Hilbert space of in­
vectors, the "halved" S-matrix is probably truly 
unitary in a larger space, which includes the indi­
cated Hilbert space. In general, the matrix 
S(x0, -oo) takes the in-vectors out of the in-space 
into the remaining part of this larger space, in 
which, in particular, the concept of particle num­
ber does not exist. The vacuum in the space of 
in-vectors, for instance, is taken by the matrix 
S(x0, - oo) into a vector which is no longer the vac­
uum for any field operator algebra (in particular 
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for finite values of Z3). In this connection, although 
two field operator algebras can be related via a 
formally unitary operator S(x0, - oo) and may sat­
isfy the same canonical commutation relations, 
the well-known theorem of Haag which implies 
that such theories are trivial, cannot be applied 
here, since the "pseudounitary" character of the 
matrix S(x0, - oo) implies that only one of the two 
theories possesses a vacuum. The corresponding 
field operators naturally belong to inequivalent 
representations. 

So far a complete solution of the problem of 
finding the mathematical meaning of the operator 
S(x0, -oo) has not yet been solved, due to technical 
difficulties. One is therefore tempted to go along 
a different way, which is in general characteristic 
for the axiomatic direction. One might first try to 
guess the solution, study its properties and only 
afterwards investigate what equations lead to this 
solution and give a rigorous foundation to the whole 
procedure. In following this path, we shall leave 
aside in the present investigation all problems con­
nected with the mathematical meaning of the rna­
trix S(x0, -co), and assume that there exists an ex­
pression of the form (2) having all the required 
properties. In this connection, the following bears 
only a formal character and does not pretend to be 
mathematically rigorous. 

Hitherto we had defined the "halved S-matrix" 
in a postulational manner "cutting in two" a cor­
respondingly written total S-matrix ( cf. (2) and 
( 4)). The problem of the arbitrariness involved in 
such an operation and the way to remove it has 
remained open, since any matrix of the form 

S(x0, -oo) = exp [-ia(xO)]S(xo, -oo), (5) 

where a(x0) is an arbitrary hermitian local opera­
tor and S(x0, -oo) is of the form (2) can also be 
called a ''halved'' S-matrix. 

In this connection the necessity of finding an 
equation satisfied by the "halved" S-matrix makes 
itself felt. This would permit to relate the prob­
lem of determining the arbitrariness of this ma­
trix with solutions of this equation. Since in the 
axiomatics adopted here [ 4• 1 • 2 J the principal 
method of singling out space-time points is by 
taking variations with respect to <Pin(Y) such equa­
tions must necessarily be functional derivative 
equations. The equation we are interested in can 
be found in the following manner. [ 6• 1 • 2 J 

On the one hand, if one defines the Heisenberg 
field operator A(x) in the spirit of Eq. ( 1), we 
have[ 6• 1• 2J 

A(x) = S+Tw (<p;n(x)S) = <jlin (x)- ~ Dret (x- y) j(y) dy, 

(6) 

j(y) = iS+8S I 8cp;n(y). 

On the other hand, one could require that the 
same operator A(x) should satisfy the equality 

A (x) = s+(x0, -co) cp;n (x)S (x0, -oo) 

(7) 

S 6S(x0 -oo) 
= cp;n(x)- i D(x- y)s+(xo, -oo) --'---' -,--~dy, 

8cp;n(Y) 
(8) 

where S(x0, -oo) is a matrix of the form (5). Then 
comparison of (6) and (8) yields the equation[!, 2J 

\ D(x-y){is+(x0,-oo) M(xo,-oo) 
· 8cp;n (y) 

- 8 (xO- yo) j (!/)} dy = 0, 

It is sufficient, but not necessary, in order that 
this equation be satisfied, that 

(9) 

6S(x0 -oo) 
i ' =S(xD,-oo)8(xD-y0 )j(y). (10) 

6cp;n(Y) 

As has been shown in [t, 2J the integrability 
condition for such an equation is of the form 

i( ()2.$'(xD,-oo) - ()2S(xo,-~) 

6cp;n (z) 6<p;n (y) b<p;n (y) bcpin (z) ' 

= S(xo, -co )[8 (z0 - xO)- 8 (yo- x 0)] A2(y, z) = 0, 

(11) 

where A 2(y, z) is a Heisenberg "current-like" 
operator, which is quasilocal in the explicit varia­
bles. [1, 2] This condition is satisfied only in theo­
ries without derivative couplings (and without 
counterterms) and is violated in any nontrivial 
local theory. Thus, in such theories, the "halved" 
S-matrix cannot satisfy a simple equation of the 
form (10). The problem whether the weaker condi­
tion (9) can be satisfied, and thus the representa­
tion (8) is possible remains unanswered. [ 1' 2 J 

In order to progress in the solving of this prob­
lem it is proposed below to give up Eq. (10) and to 
find out what equation is formally satisfied by the 
postulated "halved" S-matrix of the form (2). 
After this it will be possible to return to the prob­
lem of the possibility of representing the operator 
A(x) and other Heisenberg operators in the form 
(8). 

2. DERIVATION OF THE EQUATION OF 
MOTION FOR THE "HALVED" S-MATRIX 

We shall start ( cf. also [ 10 J) from the formal 
analogy with the situation encountered in the 
Tomonaga-Schwinger equation, where in the pres­
ence of derivative couplings the equation is no 
longer true with only -Lf(x) in the right-hand 
side, but where this leads only to a modification of 
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the equation (replacement of - L~n(x) by H}nt(x; a)) 
and does not lead to giving up the "halved" S­
matrix. 

In order to find such a modified equation for 
our case, we vary both sides of Eq. (2) with re­
spect to <Pin(y). We obtain 

.6S(xo,-oo) ·r [s( o ) 
L =z D x,-oo 

bljlin (y) 

( r t>Hint{_z) )] X -iJ 8(x0 -z0)--·-dz . 
_ 00 b!p;n (Y) 

(12) 

Expanding the Tn-product in (12), taking into ac­
count e (x0 - z0), we have 

i bS(xD,-oo) = ~ S(xo,zo) 6H_fnt(z) 
6QJ;n(Y) _:00 <'iljl;n(Y) 

"" X S(z0,- 00) 8(x0 - z0) dz =S(xO, -co) .r e (x0 - z0) 

X j' (z, y) dz, (13) 
-oo 

''( S+( o 6Hint(_z) S o ] z,y)= z,-oo)----~ (z,-oo). 
6!p;n (y) 

(14) 

Since we start from definition (2), the integra­
bility condition for Eq. (13) must automatically be 
satisfied for any theory in which (2) is meaningful. 
Indeed, it follows from (13) that 

i( tJ2S(x0,-oo) ,-, ()2S(xD,-oo)) 
\ bljl;n(u)61Jl;n(Y) 61jl;n(Y)61Jl;n(u) 

= S(x0, -co) { s dz e (xO- zO)S+(z0, -co) 
-oo 

[ ()2H_fn~z) - ()2Hin'{z) J S(zo -oo) 
X 61jlin (u)biJl;n (y) bljl;n (y) bljl;n (u) ' 

-is dz dt e (xD- zO) e (xO- fO)[TD(j' (z, Y) j' (t, u)) 

-TD(j'(z,u)j'(t, y))]}, (15) 

which vanishes due to the locality of H~nt(z) and 
the symmetry of the Tn-product.in u and y (if 
one takes into account the substitution z- t in 
the last term). In the following it will be shown 
that the transition from the matrix S(x0, -oo) of the 
form (2) to a matrix S(x0, -oo) of the form (5) can­
not influence the validity of the integrability con­
dition. 

In particular, when 

6Hint(z) __ bLiin(z) _ .. ( )"( _ ) 
---- - ]m Z u Z Y , 
b!p;n(Y) b!p;n(Y) 

it follows from (13) that 

c'\S(x0, -oo) -'---....,.-- = S(xo, -oo)8(xo- yO)j(y), 
b!p;n (y) 

(16) 

(17) 

in agreement with Medvedev's results. [ 1• 21 In the 
general case the expression for oHint(z) /o<Pin(Y) 
may contain terms involving derivatives of 
6(z- y). Indeed, it is easy to see that if an arbi­
trary local operator M(z), which is a sum of nor­
mal products of field operators <Pin(z) and their 
derivatives, is first represented in the form of an 
expansion in normal products of the fields <Pin 
only (no derivatives), and if one takes variations 
with respect to <Pin(Y) and then carries over the 
derivatives from the coefficient functions of the 
product back onto the fields <P in• one obtains the 
following general formula: 

6M (z) " [ iJi J ( iJi'Pin (z) ·) 
6 . ( ) = ~ iji6(y-z) iJM(z) iJ iJ i , • 

'Ptn Y i=O Y Z (18) 

For M(z) = Hint(z) only time derivatives are 
important from our point of view. Therefore we 
reconstruct the series (18) in terms of time-deriv­
atives only and introduce the notation 

(19) 

Su~stituting now the general expression for 
oHjnt(z)/6<Pin(y) into (14) and carrying out the in­
tegration with respect to z in (13), we have, 
finally 

{)S (x0, -co) "" i)i _ 
i -- = S (x0, -co) L.J ---,-- [8 (xo- yo) ji(y)] 

61jlin (y) i=O iJyo' 

(20) 

where cr is the number of combinations of n ob­
jects taken i times (Cf = <f> is the binomial co­
efficient), 

h(y) = S+(yD, -oo)f;int(y)S(yo, -oo), (21) 

and nnt(y) is defined by (19). 
Thus, in the right hand side of (20) there ap­

pear delta-like terms in the time variable, in ad­
dition to the terms with e (x0 - y0) which are pres­
ent in the simplest case (17). We thus observe a 
complete analogy with the ordinary Tomonaga­
Schwinger equation, where in the presence of de­
rivative couplings the equation is somewhat modi­
fied due to the occurrence of additional terms. In 
that case however such terms are not too essen­
tial, and for many theories they disappear from 
the total S-matrix. [ 51 This allows one to hope 
that, due to the fact that the additional terms in 
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the right hand side of (20) can contribute to the 
"halved" S-matrix only on the surface Xo = const, 
they are somehow a reflection of a unitary arbi­
trariness of type (5) in the definition of that quan­
tity, and are inessential from the point of view of 
the total S-matrix. We shall return to this ques­
tion later. 

3. A NEW REPRESENTATION FOR THE 
HEISENBERG CURRENT OPERA TOR 

In order to have a convenient way of comparing 
the right-hand side of (20) with the expression 
e (x0 -l)J(y), we derive here a new representa­
tion for the Heisenberg current operator. We shall 
start from the definition (7) and the representation 
of the S-matrix in terms of Tn-products (cf. (4)) 
and we make use of the unitarity and group prop­
erty of the matrix S(x0, -co) of the form (2). Then 

{ 68 ( oo xo) {)8 (xo -oo) 
j(y)=i8+(xo,-oo) 8+(oo,xO) ' + ' -

6<p;n(Y) l><p;n(Y) 

where the "halving" point x0 has been chosen ar­
bitrarily. 

Transforming (22) with the help of (13) we ob­
tain 

j(y) = 8+(x0, -oo) ~ dz { 8(z0- x0)8+(zo, x0) 
-co 

(23) 

Substituting here the expression for <5H}nt(z) I 
ocpin(y), taking into account (18) and (19) and car­
rying out the z-integration, the result is 

X i)i 
j(y) = ~ -. {[e(yo- xO)+ 8(xo _ y0)]8+(yo, -oo) 

i=O O!fo' 

(24) 

where Ji(Y) are of the form (21). It should be 
noted that the transformations involving e­
functions carried out here and in the preceding 
section may seem somewhat formal. However the 
results obtained confirm that they are legitimate. 
Comparing (24) multiplied by e (x0 -l) with the 
right hand side of (20) one notes that the differ­
ence of the two expressions consists in the fact 
that in (20) the functions e (x0 - y0) are also dif­
ferentiated, whereas in e (x0 - y0)j(y) the deriva-

tives do not act on e (-,f - y0). This difference 
may, in principle, appear already in the first or­
der derivative. 

Let us write the above expressions for the 
special case of a neutral scalar self-interacting 
field with the effective Lagrangian: [ i1J 

Liin(x) = gZ1: (jl;n4 (x) : + 1fz(Za -1) : <j)in(x)Kx<p;n(x) : 

-1/~a6m2 : <p;n2 (x) :, (25) 

where Kx= Dx- m2• This theory will be the prin­
cipal object of our investigation in the remainder 
of this paper, but this does not restrict the gen­
erality of the results obtained. As has been shown 
previously, [ 61 in this case (taking into account the 
term with om2) 

Hint{x)=- gZ1 :cp;n4 (x) :- (\1---!-) :cp;n(x)Kx<j)in-(x): 
Za2 1Za 

1 
+2:6m2:cp;n2(x) :, (26) 

whence 

- ( 1- ~ )(\2Kx<j)in(x)+ 02<j)in )+6m2q>;n(x), (27) 
1Za 0Xo2 I 

hint(x) = oH Iint (x) fa ( azcp;n (x) ) = (1 - .~ ) <p;n (x), 
\ axo2 "J'Za 

~ {)2 -
j (x) = io(x) +-a 2 h(x). 

Xo 

The equation of motion (20) for the matrix 
S(x0, -co) takes in this theory the form 

l>8(x0,-oo) 

6cp;n (y) 

{ ajz 
= 8(xo, -oo) 8(xo- yO)j(y)- 6(xo- yo)_ a yo 

a ~ } --[6{xo- yO)iz(y)] 
{)yO 

or the equivalent form 
68(xO -oo) { 

i ' =8(x0,-oo) S(xO-yO)j(y) 
6<p;n (y) 

(28) 

(29) 

(30) 

( 31) 

It is easy to understand that in going over from 
a matrix S(x0, -co) satisfying (30) or (31) to 
S"(x0, -co) of the form (5), one might in principle 
simplify the right hand side of the equation by an 
appropriate choice of the operator a(x0). How­
ever, even after such simplification, the equation 
for S(x0, -oo) does not reduce to a trivial equation 
of the form (17), since for the theory under con-
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sideration such an equation does not satisfy the in­
tegrability condition, [ 1• 21 and as shall be shown 
below, the unitary transformation ( 5) cannot have 
any influence whatsoever on this condition. 

4. THE PROBLEM OF DEFINING THE 
HEISENBERG CURRENT OPERA TOR 

In this section we shall make use of the for­
mulas derived above in order to rederive in a dif­
ferent manner the previously obtained[ 61 expres­
sions for the renormalized Heisenberg field opera­
tor A(x) of the form ( 6) and its time derivative 
A(x). These expressions were obtained previously 
by applying an analog of Wick's theorem, and it 
was established in [ 61 that 

A(x) = Z3-'f,S+(x0, -oo)cp;n(x)S(x0, -oo), 

A(x) = S+Tw(cp;n(x)S) 

= Z3-'f, S+(x0, -oo) cp;n (x)S (xo, -oo) 

(32) 

(33) 

for any renormalizable theory and in particular 
for the theory with L~n(x) of the form (25). 

In the case under consideration we shall not 
look for a representation of the form (8) for A(x), 
since the possibility of obtaining it is still not 
cleared up. Instead we shall, as before, [ 61 develop 
the idea put forward by Kirzhnits, [121 that one 
might attempt to represent A(x) in the form 

A(x} = S+(x0, -oo)<p;n(x)S(x0, -oo) + z(x), (34) 

where S(x0, -oo) is of the form (12) and the opera­
tor X (x) is assumed to have the representation ( 3), 
i.e. 

x(x) = S+(xO, -oo)xint(x)S(xO, -oo). (35) 

Transforming the first term in (34) in the same 
manner as in (8), and comparing with (6}, we ob­
tain for X (x) [t2J 

S { 6S(xO -oo) 
x(x) = dy D(x- y) iS+(x0, -oo) -6'--cp-;~---,-(y_)_;__ 

-e(xo-y0)j(y)}. (36) 

Taking into account Eq. (20) and the expressions 
for the current j(y) of the form (24) we obtain in 
the general case 

IC {)i -

x(x)=S dyD(x-y);~ {ayoi[S(xo-.yo)j;(Y)] 

a; x 

-8(x0 -y0)-;"t(y}}= ~ (-f)i sdy6(y0-xO) 
ayo i=t 

(37) 

We thus obtain in general that X (x) f. 0; however, 

if the curly bracket in (37) can be nonzero already 
in the presence of the first order derivative, the 
expression for X (x) itself will be nonvanishing 
only beginning with the second derivative, since 
the contribution of the first derivative to X (x} 
vanishes, due to the presence of the factor 
D(x - y) o(x0 - y0) = 0 (some terms may also van­
ish in the case of higher order derivatives). 

In the case which interests us (taking into ac­
count (30)) 

'1. (x) = ~ dy D (x- y) {- 6 (x0 - y0 ) aj~t~) 

- a~o [6 (x~- y0)h (y)]} = -1 (x). (38) 

Hence, taking into account (21), (28) and (35) 

zint{x) = (Z3-'I•-i)qJ;n(x), 

in agreement with (32). 

(39) 

One can, of course, obtain an expression for 
A(x) of the form (33) either by differentiating (32) 
or by differentiating ( 34). It is however interesting 
to proceed independently, starting only from the 
definition of A(x). Then, on the one hand 

A (x) = ~in(x)- ~ dy iJ (x- y)8(x0 - y0)j (y) dy, (40) 

and on the other hand we shall look for A(x) in 
the form 

A(x) = S+(x0, -oo)cp;n(x)S(x0, -oo) + TJ(X), (41) 

where Tl (x) has a representation of the form (3). 
Then, equating (40) and (41) we obtain 

"'l (x) = ~dyD(x-y){is+(x0,-ao) 68 ~~::{;)oo) 

(42) 

where, if we would require a unitary relation be­
tween A(x) and o/in(x), it would be necessary to 
put Tl (x) equal to zero. 

The terms with o(x0 - y0) and its even order 
derivatives did not contribute to the expression 
(36) and similarly, the odd order derivatives of 
o(x0 -l) do not contribute to ( 42). In the particu­
lar case we are interested in we have (taking (30) 
into account) 

"'l (x) = ~ dy D (x- y) {- {j (xo _ yo):; 

a r .. ( o o) -:- < ) } a.); - ayo u X - y J2 y j = - ayo ' (43) 

from where it follows easily that 

'l"Jint (x) = (Zs-'f,- 1)(jlin(x), (44) 

in agreement with (33). Thus the use of the analog 
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of Wick's theorem which was derived previously[SJ 
and which relates the Tw- and Tn-products has 
been completely vindicated. 

5. SOLUTION OF THE EQUATIONS OF MOTION 
FOR THE "CURRENT-LIKE" OPERATORS 

Medvedev[ 131 (cf. also [ 1•21 ) has proposed a 
representation for the S-matrix in the axiomatic 
approach in which the Heisenberg-picture 
"current-like" operators Av(xi, ... , xv) play an 
essential role. He has also derived equations of 
motion for these operators, which in the asymp­
totic in-picture have the form 

6Av ( X1, ••• , Xv) . 0 0 [ ] 
{J. () =LS(x; -y)At(Y),Av(xt, ... ,xv) 

Cflm Y 

(45) 

where A1 (x) = j(x) of the form (7). 
As has been stressed in [ 1• 21 if each of the 

operators Av would be unitarily related to its in­
transform by means of the matrix S(x0, -oo), and 
the latter would satisfy an equation of motion of 
the form (17), then one could get rid of the nonlin­
ear terms in ( 45) and it would take the simple 
form 

6Avin (xh ... , Xv) Ain 
() = v+t(Y,Xt, ... ,Xv). 

6cp;n Y 
(46) 

This wc·1lrl imply: a) the true quasilocality of the 
operators A in; b) the possibility of deriving all 
Av by variations of one operator 

00 

Aoin = f Liin(S)d;. 

However it is known[ 1' 2• 61 that this is not so and 
therefore the problem of solving ( 45) remains 
open. These equations can be solved in principle 
by admitting, in agreement with (3), a representa­
tion of A v of the form 

Av (xt, ... , Xv) = S+(x;0, -oo )Avint(xt, ... , Xv)S(x;0, -oo) 

(47) 

and making use of the equation (20) for the matrix 
S(x1, -oo). 

As an example we consider in the general case 
the first equation of (45). Substituting into it an 
expression of the type (47) for A2(x,y), the expres­
sion (24) for the current and carrying out the vari­
ation, we obtain 

~ (}i i [s+ (x0 , - oo) 67/n~(x) S (x0 , - oo >] 
i=o OXo 6Cflin (y) 

~ (Ji (}i { - - } + i ·""" OX i 7fy} e (XO- yO) (jj (y), j; (x)j 
'·1=0 0 0 

(48) 

It is easy to see that the nonlinear terms cancel 
out in this equation and only terms which can in 
principle be represented in the form ( 3) remain. 
Thus in general, ( 48) can be reduced to an equa­
tion for operators in the interaction picture. How­
ever this equation will not have the simple form 
( 46) even for the operator A~nt, since different 
equal-time commutators will also contribute to it. 

We will continue our further investigation p.ot 
in the general form, but for the theory with Lrn(x) 
of the form (25). Substituting in (45) the represen­
tation (47) and making use of the equation of mo­
tion (30), we obtain that 

Aint 
int 6 v (x1, ... ,xv) 

Av+l ( y' x~, ... ' Xv) = ---'-------'--
0{Pin(Y) 

· o o 2 int [ OJ.,. int (y) ] 
-L6(y -X;) ayo 'Av (x1, ... , Xv) . (49) 

If one takes into consideration the fact that the 
current j(x) admits the representation (29), it 
turns out that Eq. ( 49) can be applied in the case 
v = 0 also, and 

00 

Aoint = s d£Hiint (£). 

. Thus (49) implies the genuine quasilocality of 
AWt and also the possibility of determining all 
A tnt from a given local Hamiltonian Hlnt(x) ( cf. 
( 28)). . 

Knowing a Hrt(x) in the form (26) and a jint(x) 
in the form (28) one can find a concrete expression 
for A ~nt in the theory we _are interested in. For 
v = 1, 2, 3, 4 (the other Atnt = 0) 2> we obtain 

. 4gZ1 ( 1 ) 
A11n 1(y)=- Z 3';, : Cfl;n3 (y) :+ Zs'/, -1 Cflin(Y)Ky 

( 1 ) 1 6m2 + Z3'/,- 1 Z3';, KyCflin (y) + Z3'f, Cflin (Y)' (50) 

(51) 

(52) 

. 24gZ1 
"Vn1(x, y, z, u)= -~6(x- y)6(x- z)l\(x- u). (53) 

2) This result is in agreement with the assertion of 
Medvedev and Polivanov[14], that in renormalizable 
theories the number of matrix elements with nonnegative de­
grees of growth is finite (not larger than four). 
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It should be noted that in the expression (50) it­
self as well as in (26) the term involving Kx:'Pin 
can be omitted. [61 We have kept it, however to the 
very end, since the variations were taken with re­
spect to the operators cpin(Y) and this term gave 
a nonvanishing contribution to (51). 3> It should 
als.o be noted that in addition to the principal term 
<'iA~nt(x1 , ... , xv)/<'icpin(Y) Eq. (49) also contains a 
term involving o(x0 - y0) which very probably can 
be eliminated by means of some unitary transfor­
mation. This problem will be investigated further. 

6. CONCLUSION 

We have obtained the equation of motion (13) 
for the matrix S(x0, -oo) of the form (2). In general 
this equation does not have the simple form (17). 
We have succeeded to discuss with the aid of this 
equation a series of interesting problems regard­
ing the structure of the mathematical apparatus of 
quantum field theory. The corresponding equation 
for the "halved" S-matrix of the more general 
form (5) is 

.6S(.x0,- oo) ,.., { cc 
l 6cp;n(Y) =.S(xo,-oo) ~ S(xo-yo)j'(z,y)dz 

-00 

+N(x,y)}, 

N (x, y) = i:S+ (x0,- oo) [ {)cp;~(y) exp (-i!X(x0))j 

X exp(i1X(x0))S(x0,- oo). 

We now show that the transformation from 

(54) 

S(x0, -oo) to ~(x0 , -oo) cannot influence the validity 
of the integrability condition of the equation of mo­
tion which was valid before (cf. (15)).4> The ap­
pearance of the supplementary term in the right 
hand side of (54) leads to additional terms in the 
integrability condition: 

6N (x, y) 6N (x, z) . 
6cp;n(z)- 6cp;n(Y) +~[N(x,y)N(x, z)] 

~ ~ 

+iS du8(x0 -uO)[j'(u,y),N(x,z)]-i S duS(xO-uO) 
-00 

X [j'(u,z),N(x,y)]. (55) 

But, according to (54) 
00 

6N (x, y) ~ ~.o....._:_-=- = i due (x0 - u0 ) [j' (u, z), N (x, y)] 
6cp;n (z) 

-00 

3>we note that the second term in (SO) does not vanish 
even on the energy shell (from the viewpoint of the current 
operator). (Private communication by B. V. Medvedev.) 

4 lThe idea of this reasoning is due to B. V. Medvedev. 

-iN (x, y) N (x, z) +iS+ (xo,- oo) 

[ 62 exp(-i1X(x0)) J . 0 -
X f:Jcp;n(z)f:!cp;n(Y) exp(t!X(X ))S(x0 , -oo). (56) 

Therefore the additional terms in the integrability 
condition are equal 

-iN (x, y) N (x, z) + iN (x, z) N (x, y) 

+ i [N (x, y), N (x, z)] +iS (x0,- oo) 

[ 62 exp (- i!X (x0 )) 62 exp (- iiX (x0)) J 
X 6cp;n (z) 6cp;n (y) 6cp;n (y) 6cp;n (z) 

X exp (iiX (x0)) S (x0 , - oo ), 

i.e., will vanish identically, if one takes into ac­
count the locality of a(x0). 

Thus, Eq. (54) cannot have the trivial form ( 17), 
but owing to the presence of the supplementary 
term N(x, y) its right-hand side can be partially 
simplified. It is not excluded that this simplifica­
tion is of such a nature as to lead to the weaker 
condition (9), which guarantees a unitary relation 
between the operators A(x) and 'Pin(x). The reali­
zation of such a simplification and a clarification 
of the physical significance of the relation between 
A(x) and 'Pin(x) will be the object of another 
paper. 

In conclusion I express my profound gratitude 
to B. V. Medvedev for continuous attention to this 
work and valuable remarks. I also express my 
gratitude to V. Ya. Fainberg, D. A. Kirzhnits and 
A. V. Astakhov for a useful discussion. 
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