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A consistent theory of nonlinear optical effects in bounded beams is developed. The theory is 
based on the parabolic equation method extended to nonlinear problems. This approach can be 
employed for analyzing nonlinear wave processes by taking into account diffraction effects in 
first-order approximation. The generation of second optical harmonics by a weakly converging 
cylindrical wave in an anisotropic medium is considered as an example. The intensity and 
spatial structure of the harmonics are determined. Satisfactory agreement between the theory 
and experiment is noted. 

1. INTRODUCTION 

1. IN spite of the considerable practical interest 
that attaches to nonlinear optical effects, a more 
or less satisfactory theory of interacting electro­
magnetic waves in a nonlinear medium has been 
developed only for plane waves (one-dimensional 
problems, unbounded beams). Although its results 
can be used in some cases (by introducing a few 
correction factors) to interpret nonlinear-optics 
experiments on real bounded beams from lasers, 
there are many experiments for which a simpli­
fied approach is impossible, especially with 
focused beams. An exact analysis of nonlinear ef­
fects at the focus (for example, the generation of 
optical harmonics, induced scattering) makes it 
necessary to take into account at least the two­
dimensional character of the interacting beams. 
It must also be emphasized that only a consistent 
theory of nonlinear interaction of bounded beams 
makes it possible to formulate quantitative cri­
teria for the applicability of the theory of plane 
waves to an analysis of phenomena in unfocused 
laser beams. 

2. Experiments on the generation of optical 
harmonics in focused beams were carried out dur­
ing the early development of nonlinear optics (see, 
for example, [ 1l ). The first attempt to develop a 
theory for the generation of the second optic har­
monic in a focus was undertaken by Kleinman, [2] 

but his approach was excessively oversimplified. 
Kleinman confined himself essentially to consid­
eration of only the region directly adjacent to the 
focal plane, where the wave can be regarded as 
plane and the nonlinear interactions one-dimen­
sional. Experiments described in [SJ have yielded 

data essentially different from Kleinman's calcu­
lations; the greatest differences appeared in the 
distribution of the intensity harmonic over the 
beam cross section. It is shown in [ SJ that an ac­
count of one-dimensional nonlinear interactions 
alone is insufficient for a correct interpretation 
of the experimental data and that allowance must 
be made for two-dimensional interactions. 

Thus, for a correct description of nonlinear ef­
fects at the focus it is obviously necessary to con­
sider the whole problem, that is, to analyze the 
character of development of the nonlinear process 
in the entire region occupied by the beam, and not 
only in the direct vicinity of the focal plane. 

3. The propagation of electromagnetic waves in 
a nonlinear medium is described by an equation of 
the form 

where 
DO 

P<!J = ~ ~(t')E(t- t')dt', (2) 

00 

p(nll = s dt' .\ dt" x.(t', t")E(t- t')E(t- t'- t") + ... , 
0 0 (3) 

K and X are tensors of second, third, and higher 
rank. For the case of plane waves (for simplicity­
unmodulated) the procedure for analyzing the non­
linear equation (1) consists of a simplification that 
reduces to a neglect of the second derivatives with 
respect to the coordinates (the amplitudes and the 

*['VE] = \7 X E. 
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phases of the interacting waves are assumed to be 
slowly varying functions of the coordinates-see, 
for example, [ 41 ). The solution of (1) is sought in 
the form 

n 

where Ji is a small parameter with magnitude 
~ A/Aat• Aat being the atomic field. Substituting 
( 4) into ( 1) and retaining only terms proportional 
to ~ Ji (the nonlinear and dissipative terms in (1) 
are of this order), we arrive at the system of so­
called abbreviated equations, which describe inter­
action of plane waves in a nonlinear medium: 

[en [knen]] VAn + enaenAn = F n(2l (Az, Am) + ... , (5) 

where & is the conductivity tensor of the medium 
and F~k> are terms connected with the nonlinear 
polarization. Most theoretical papers on nonlinear 
optics published to date are based on equations 
such as (5). These equations characterize, as can 
be readily seen, the variation of the amplitudes of 
the interacting waves along the rays-the vector 
[en x [kn x enll is parallel to the ray vector Sn. 
Thus the use of equations such as (5) for an 
analysis of phenomena in bounded beams (this ap­
proximate approach is the basis of papers [ 2- 41 ) 

corresponds essentially to the geometric-optics 
approximation. 

To allow for diffraction effects in a beam of 
finite cross section, it is necessary to introduce 
the derivatives of the amplitude not only along the 
rays, but also transverse to them. Since a transi­
tion to the shadow region takes place in directions 
perpendicular to the beam, the variations of the 
amplitude along the beam should be regarded as 
slower than those transverse to the beam. It is 
therefore natural to seek for a bounded beam a 
solution of ( 1) in the form 

E = ~ enAn (f.trSn, 1''-;;, [rsn]) exp{i ( wnt- knr)}. (6) 
n 

Substituting (6) in (1) we obtain in first approxima­
tion in Ji, in place of (5), the partial differential 
equation 

i A 

[en[knen])VAn +-~l_An + enaen = Fn<2>(Az, Am)+ ... , 
2 

(7) 

where A 1 is the Laplacian corresponding to dif­
ferentiation in a direction perpendicular to the 
beam. 

In a linear medium (all F~k> = 0) Eq. (7) goes 
over into an equation of the parabolic type with an 
imaginary "diffusion" coefficient; such an equa­
tion is extensively used in diffraction theory. By 

now the parabolic-equation method ha3 been used 
in many problems involving diffraction in linear 
isotropic[ S-Tl and anisotropic media. [ 81 We shall 
use equations of the (7) type and analyze in detail 
the generation of the second harmonic of a cylin­
drical wave in a medium whose polarization de­
pends quadratically on the field intensity. 

2. REPRESENTATION OF A WEAKLY 
CONVERGING CYLINDRICAL WAVE 

We shall represent the general formula for an 
unmodulated wave that converges cylindrically to 
a point (see, for example, [ 9• 10 l) 

+oo 
E(x, z, t)= ~ f(a)exp{i[wt-krcos(S-a)]}da (8) 

(where r and e are the polar coordinates in the 
x,z plane), for the case of a weakly converging 
wave (the function f (a) differs from zero for 
angles Ia I <a'~..f;i), in the form 

E = eA (x, z) exp{i(wt- kz)}, (9a) 

A (x, z) = v Pt~ r exp{- ikxa + ika2 z }da, 
cba -a' 2 

P1 = :! ! AA* dx, (9b) 
-oo 

where P1 is the total power of the beam and b the 
width of the beam in the direction perpendicular to 
the x,z plane; when b >>A. the diffraction can be 
disregarded in this direction. 

The representation (9) can be regarded as a 
satisfactory model of a laser beam focused with 
the aid of a relatively long-focus cylindrical lens, 
and also an unfocused beam generated by a flat 
crystal. It is also easy to verify that (9) corre­
sponds fully to the approximations used in a dif­
fraction theory based on an analysis of the para­
bolic equation; the slowly varying amplitude (9b) 
satisfies a linear equation such as (7). 

The amplitude of a cylindrically converging 
wave reaches a maximum on a focal line of length 
b (x = 0, z = 0) and is equal to 

(10) 

in the x,z plane the focal spot is in the form of an 
ellipse with semi-axes 

zr='A/(a')2, xr='A/2a'. (11) 

The variation of the structure of the field of the 
focused beam was analyzed in detail in [9 , 101 • In 
the direct vicinity of the focal plane z = 0, the 
wave can be regarded with sufficient accuracy as 
plane; on the boundary of the focal spot, and with 
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increasing distance from it, the front becomes 
more and more cylindrical. 

3. DERIVATION OF PARABOLIC EQUATIONS 
DESCRIBING THE EXCITATION OF A 
SECOND HARMONIC BY CYLINDRICAL 
WAVES IN AN ANISOTROPIC MEDIUM 

With the aim of comparing the results of the 
theory with experiment, let us consider the prob­
lem of greatest practical interes~, that of genera­
tion of a second harmonic in a uniaxial negative 
crystal, by means of an ordinary wave of funda­
mental radiation (see, for example, the experimen­
tal papers [i, 3• 111 ) whose frequency is far from 
any absorption line. However, unlike in [Z, 41 , we 
assume that the fundamental wave is not plane but 
has the form (9). The harmonic-generation proc­
ess occurs most effectively near the so-called di­
rection of one-dimensional synchronism, along 
which the phase velocities of the ordinary wave of 
the fundamental radiation and of the extraordinary 
wave of the second harmonic coincide. Then, in 
accordance with (6) and (9), the field in the non­
linear medium can be represented in the form 

E = e1°At(t.tz0; l'l.txo) exp {i(wt- k1°z0)} 

+ e2•A2(1-1ze; l'"JA.x.) exp {i(2wt- k2•z.)} + c. c. (12) 

In the nonlinear medium there interact a cylin­
drical ordinary wave of fundamental frequency 
(polarization vector e~, wave vector k~, ray vec­
tor st axis z0 parallel to st Xo II e~) and a cy­
lindrical extraordinary wave of the second har­
monic (ef, kf, Sf; Ze llsr; Xell er). Assuming that 
the axis of the fundamental beam coincides with 
the direction of one-dimensional synchronism 
(along which kf = 2k~ ), substituting (12) in (1), re­
taining only the first term of (3), assuming f{ to be 
a real quantity, and retaining terms "'11• we obtain 
for the complex amplitudes A1 and A2 two equa­
tions of the parabolic type in terms of the corre­
sponding ray coordinate: 

iJA1 1 iJ2A1 4ttw2 • 

-,- = -2-.k-o -,-2 + -. -2k-o ( e,ox2"'-"' e2• elo) A2A1*' 
uZo l 1 uXo W 1 

(13a) 

iJA2 1 iJ2A2 8nw2 

-- = -----+ -----<-""-:;--- ( ez"x2"' e!O e!O) A12· 
az. 2ik2• iJxi ic2k2• cos k2• s2• (13b) 

Here x2w and x2w-w are the spectral components 
of the tensor x. Equations (13) are simpler than 
the initial equation (1), but even their solution en­
tails great difficulty in the general case. (We note 
incidentally that (13) are more convenient than (1) 
for digital-computer solution.) 

To obtain analytic results, we simplify (2) fur-

ther, confining ourselves to the given-field approx­
imation (we neglect the reaction of the second har­
monic on the fundamental radiation), and write both 
equations of (13) in terms of the ray coordinates 
x0 and z0• The latter can be easily done by intro-

---... 
ducing the anisotropy angle {3 = kfsr; in accord-

/"'-... ............... 
ance with the foregoing, s~sf = kfsf = {3 and con-
sequently 

Zo = Ze cos ~ - Xe sin ~. Xo = Ze sin ~ + Xe cos ~- ( 14) 

Carrying out the transformations and recognizing 
that the anisotropy angle can be regarded as a 
small quantity {3 ..... /;, we arrive at the equations 

iJA1 1 . iJ2A1 
-- = ____.j- (15a) 
iJzo 2ik1° iJx02' 

iJA2 1 iJ2A2 iJA2 . 
- = -. -·---~-- ~vA12, (15b) 

iJzo 2zk2• axo2 axo 

where 

Equations such as (15) correspond to a definite 
approximation in the calculation of the dispersion 
properties of the nonlinear medium. Within the 
framework of (15), the equation for the sections of 
the wave vectors can be obtained (compare with 
[ 81 ) by putting 'Y = 0 and 

A1 = exp {-t(qx0.Xo + qbo)}, (16a) 

A2 = exp {-i(qx•xo + q!zo)}. (16b) 

Substituting (16a) in (15a) we obtain for the ordi­
nary wave the equation of a parabola 

0 + 1 ( 0)2- 0 q, 2k!O qx - ' (17a) 

and for the extraordinary wave (substituting (16b) 
in (15b)) 

(17b) 

The parabolas ( 17) approximate the sections of the 
real surfaces of the wave vectors-circle and el­
lipse (see Fig. 1). 

4. GENERAL SOLUTION OF THE PARABOLIC 
EQUATION OF THE SECOND HARMONIC 
FOR A SPECIFIED FUNDAMENTAL­
BADIA TION FIELD. CONDITIONS OF 
EFFECTIVE GENERATION OF THE 
HARMONIC 

Assume that a cylindrically converging wave of 
fundamental radiation, defined by (9), is incident 
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FIG. 1. Sections of the surfaces of the wave numbers of 
the ordinary wave of fundamental frequency (curve 1°) and ex­
traordinary wave of the second harmonic (curve 2'?· Synchron­
ous one-dimensional interactions occur along the z axis; we 
also show here a diagram of the synchronous two-dimensional 
interaction. 

on a layer of nonlinear medium of thickness L 
(Fig. 2) in such a way that the focus is located at 
a distance Z1 and Z2 from the front and rear 
boundaries of the layer, respectively (Z 1 + z2 = L). 
We align the x and z axes with x0 and z0, and 
locate the origin at the focus. We assume that 
Az = 0 when z = -1 1 and the amplitude of the re­
fracted wave of fundamental frequency in the me­
dium (which is a solution of ( 15a)) is 

V P 1k/J a.~u { • ik10a2 } 
A,(x,z)= --- exp -tk1°xa+--z aa. (18) 

cbao 2 
-rt.o 

In (18) the angles a are measured from the 
beam axis in the nonlinear medium; the integra­
tion in (18) is within the limits [ -a0; a 0]-the angu­
lar aperture of the beam in the medium 
ao = a'ko/kt where ko is the wave nu~ber for the 
fundamental wave in the linear medium (usually 
ko/k~ < 1 and a 0 < a', see Fig. 2). 

Under the formulated boundary conditions, the 
amplitude of the second harmonic on the rear face 
of the nonlinear crystal (z = Z2) is 

A2(x,l2)= -iy ~a, v ik2" r asA12(£,<) 
::1, 2:rt ( l2- •) -00 

{ -ik2e[£-x+ ~(12 -<)]2} X exp ----- ··::-:-:--'__:___:_:: _ _:__~ 
2(l2- •) 

(19) 

Substituting here A1 from (18) and integrating with 
respect to ~, we obtain 

- iyP,k,o {- ik2ez2~2 }I~ a, rt.o 

A2(x, l2) = -cbao- exp --2-- ~ a,~ aa1 ~ aa2 
-Zl -Ct.o -a0 

Nonlinear medium 

FIG. 2. Diagram explaining second-harmonic generation by 
a cylindrically converging lens in a layer of a nonlinear medium 
of length l, + l2 = L. The normal to the boundary of the layer 
coincides with the beam axis and with the synchronous direction 
for the one-dimensional interaction; a' is the divergence of the 
beam in the linear isotropic medium, a 0 = a' k0/k~ is the diver­
gence in the nonlinear medium; R is the shift of the focus in 
the nonlinear medium. 

X exp {- ik,ox (a, + a2) + il2 (k2e~ + k,o~, + k,oa2) 2 
2k2e 

ikh ) 
+~;-[(a,- a2) 2- 4~(a, + a2)]J. (20) 

The behavior of the second harmonic at a point 
of observation behind the rear face of the nonlinear 
medium is described when z > z2 by a parabolic 
equation of the form (15a), in which k~ should be 
replaced by 2ko-the wave number of the second 
harmonic in the linear medium, which in turn is 
assumed isotropic (for exampl~, vacuum). The so­
lution of the Cauchy problem for an equation of the 
type (15a) can be written either by using expres­
sion (2) directly, or by using the angular spectrum 
of the second-harmonic amplitude in the section 
lz, i.e., a representation of the type (9). The latter 
(see, for example, [ 7J; cf. also formula (9)) is of 
the form 

00 

Az(x,z)= ~ Az(kzx,l2) 
-oo 

(z~lz), (21) 

where 

1'"" 
A2(k2x,lz)= 2:n;_I Az(x,lz)exp {ik2xx} ax. (22) 

By applying the transformation (22) to (20) we ob­
tain 
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It follows directly from (23) that A2(kzx, lz) can as­
sume values differing noticeably from zero only if 
the following conditions are simultaneously satis­
fied: 

k2x = k1°a1 + kt0U2, 

(a1- a2)2 = 4[)(a, + a2). 

(24) 

(25) 

For fixed kzx, relations (24) and (25) impose con­
ditions on the fundamental-radiation wave-vector 
projections effectively participating in the genera­
tion of the harmonic plane wave, whose wave­
vector projection on the x axis is equal to kzx· 

Here (24) is the ratio of the projections of the 
wave vectors on the x axis, and (25) (with (17) 
taken into account) is the same for the z axis. In 
place of (24) and (25) we can write the vector re­
lation 

(26) 

which can be called the synchronism condition. 
Condition (26) is satisfied only for one-dimensional 
interaction (kf1• o>ll k~2 • o>) if kzx = 0, if kzx * 0 and 
(kfl• o> ;/. kfZ• o>) for two-dimensional interaction 
(see Fig. 1). 

From (24) and (25) we can determine the an­
gles a 1 and a 2 at which the fundamental waves 
satisfying the condition (26) propagate: 

Ut = k2x / kz• ± l"2[)k2x I k2", U2 = k2x I k2"' + )"2[)k2x I k{. 

(27a) 

It follows from (27a) that real values of a1, 2 cor­
respond only to positive kzx· The latter denotes 
that effective generation of the second harmonic 
in the focused beam occurs only on one side of the 
one-dimensional synchronism direction. Therefore 
the form of the angular spectrum of the second 
harmonic differs essentially from the angular 
spectrum of the fundamental radiation; the sym­
metrical spectrum A1 (see (9)) gives way to an 
asymmetrical spectrum A2• The limiting value of 
kzx for which (26) can still be satisfied in a beam 
with divergence a0 is determined by the relation 

k~~mfk2• = ao + ~ -l"~ (2ao + [)). (27b) 

We now turn to a detailed study of a spatial 
structure and of the power of the second harmonic. 
Integrating (23) we obtain 

(28a) 

(28b) 

Here C(7J1) and 8(7]1) are the Fresnel integrals, 
and 

'Y]1 = r(ao- I k2xi I k2•)'Y]. 

In order to illustrate the main features of the 
second-harmonic generation process in a focused 
beam, we shall consider separately two limiting 
cases: focusing of the beam with the aid of lenses 
with long focus (Zf » L) and short focus (zf « L). 

5. CHARACTERISTICS OF SECOND HARMONICS 
EXCITED BY A LONG-FOCUS CYLINDRICAL 
LENS 

The condition Zf »L is equivalent (see (11)) to 
the relation 

(29) 

Using the expansion of the Fresnel integrals for 
small values of the argument 

-1/ 2 ( 3- 'f]!7 \ 
S('YJd- V ;11 'YJ1 7~3!+ ... ), (30) 

we can calculate approximately the integral (28) 

2vP1 ( lk2xl) {' L} (31) A2 ( k2x l2) = -.----- ao- --- ( 1 - exp L[)kzx ) . 
' cbao[)k2x k2• 

Using ( 31), we can calculate the amplitude of the 
harmonic at the point of observation A2(x, z) (see 
formula (21)) and the total power of the second 
harmonic at the output of the nonlinear crystal 

P2 = cb·2:n: r A 2 (k2x, l2)A*(k2x, l2)dk2x. (32) 
4n: -co 

From (31) we easily see that the expressions 
for A2(x, z) and P 2 are determined essentially by 
the relation between the wave divergence a0 and 
the anisotropy angle {3. 

When a :::: f3, and consequently (see (29)) when 
2{3a 0k~L « 1, we have 

(33) 

and the distribution of A2(x, z) remains homogene-
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ous in x. When {3 » a0, such that 2{3a0k~L » 1, we 
have 

(34) 

The quantity A 2(x, z) can be calculated in this case 
by the stationary-phase method (the observation is 
usually carried out at distances sufficiently far 
from the crystal z - !2 » Zf). Depending on the 
observation angle e = (x - {3L/2) I z we obtain for 
A2(x, z) 

Formulas (33) and (34) show that Zf » L when 
the dominant role in the second-harmonic genera­
tion process is assumed by one-dimensional inter­
actions. Indeed, formula (33) has the same struc­
ture as the formula for the power of the harmonic 
generated by a plane wave propagatin~ in the one­
dimensional synchronism direction P2P1 > 
= 4rry 2PrL2/ca, where a is the area of the funda­
mental-radiation beam. 

Formulas (34) and (35) are similar to the for­
mulas derived in [Z, 31 for a weakly diverging beam, 
in which the generation of the second harmonic is 
produced by one-dimensional interactions along 
each of the rays. 1> In analogy with [ 2• 31 we can 
introduce here, too, the concept of the coherent­
interaction length Lc = 2rr/{3a0 k~. Then the condi­
tion for the applicability of (33) is L/Lc « 1, and 
deviations from the conditions of one-dimensional 
synchronism over the cross section of the focus 
are insignificant, while for ( 34) and ( 35) we have 
L/Lc >> 1 (deviations from the conditions of one­
dimensional synchronism over the section of the 
focus are appreciable). With the aid of (33) and 
( 34) we can determine the energy gain resulting 
from focusing the main radiation, by comparing 
P2 and P2' with the powers of the harmonics gen­
erated over the same length by an unfocused beam 
of area a = b2• The quantity Pf should obviously 
be compared with P~pl>, and P2' with the power of 
the second harmonic generated by a beam having a 
divergence a0 and an area b2• We have 

(36} 

1>we note that by using (28) we can also consider, in a 
manner more rigorous than used in[2 ,'], the generation of har­
monics in a weakly diverging beam exciting a nonlinear crystal 
situated far from the phase center of the wave. We can obtain 
the formulas derived in[2 ] by assuming that the signs of l, 
and l 2 are the same and that l 2 = L + l, (L « l,), and by inte­
grating (28). 

Thus, the gain due to the focusing is Jetermined 
when Zf » L only by the increase in the field in­
tensity of the focus; calculations of the character­
istics of the second harmonics can be carried out 
in this case with the aid of the formulas derived in 
the geometric-optics approximation by substituting 
in them bxf in lieu of b2• z> 

6. EXCITATION OF SECOND HARMONICS WHEN 
FOCUSING A BEAM WITH A SHORT FOCUS 
LENS IN THE MIDDLE OF THE CRYSTAL 

When a beam is focused by a short-focus lens, 
the length of the crystal exceeds the size of the 
focal spot, so that the following relation is satis­
fied: 

(37) 

Without loss of generality, to simplify the final ex­
pressions, we can confine ourselves to an examina­
tion of the focusing of a beam in the center of the 
crystal, that is, we can put Z1 = !2• Then inequality 
( 37) will be satisfied for either Z1 or !2, from 
which it follows that the focal spot is sufficiently 
far from both the front and the rear boundaries of 
the crystal. When condition (37) is satisfied we 
can obtain for the integral (28) an asymptotic equa­
tion that makes it possible to express A2(kzx, !2) in 
the following manner: 

A (k l ) _ -i2yP1 -y2nk1°lz { ikzxlz . . } 
2 zx, 2 - b k 0 exp ~-+ ~~k2xl2 

c ao 1 2k2e 

X [ ·CI> ("Y~kzxlz)'-t 0 ( i ) ] , ( 38) 
"Yk1°lz ( ao -I kzx I/ kze) 2 · 

where the amplitude distribution function is 

Cl> ("Y~kzxl2 ) = C ("¥~I kzx llz) ~ S ("¥~) 
"¥2~ I k2x llzl n 

[ ~ ~I k2x llz r1
• for 

kzx - > ao + ~- "Y~(2ao + ~) 
kze 

0 for 
kzx · 
-k < ao + ~- "Y~(2ao + ~) 

z" 
(39) 

In formula ( 39) the plus sign should be taken for 
positive k2x and the minus sign for negative kzx· 
The last term of ( 38} indicates the order of mag­
nitude of the quantities discarded when evaluating 
the integral. 

Using (38) and (39) we can calculate the inten:-

2>For a diverging beam with divergence other than a 0 and 

equal to a,, we get TJ" ""a,b/aoxf and at a,lao << 1 the gain 
due to focusing can decrease noticeably: TJ" = 1 when 
a,= A/b, i.e., in the case of diffractive divergence. 
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5 7 

sity of the second harmonic at the point of obser­
vation and the total power of the second harmonic. 
Since condition (37) is satisfied we can use the 
method of stationary phase to calculate the inte­
gral (21) and then the quantity IA2(x, z) 12 takes the 
form 

8n2y2P12lzko ---
!Az(x,z) 12 = ?b2 2 k 0 I<D(l'2~lzkoS) 12, (40) 

c· ao z 1 

where e = (x - {3Z 2)/ z (if k~ and ko differ greatly, 
then z must be replaced by z1 = z - Z2(k1 - ko)/k~). 
Thus, the character of the spatial structure of the 
second-harmonic radiation is determined by the 
form of the function <I>. Figure 3 (curve 1) shows a 
plot of I <I> 12 as a function of the reduced value of 
the angle 

8 = 2~koOL In. 

The same figure shows for comparison a plot of 
the spatial structure of the second harmonic, gen­
erated by a diverging beam in which only one­
dimensional interactions occur 3> 

(curve 2); the central maximum of curve 2, which 
contains more than 90% of the second-harmonic 
power, spans an angle 80 = 4. 

Comparison of curves 1 and 2 shows that their 
forms differ most strongly in the region of posi­
tive k2x, obviously because of the contribution of 
the two-dimensional interactions when a short­
focus lens is used (see formula (27a)). On the 
other hand, in the region of negative k2x the gen­
eration of the harmonic is due to one-dimensional 

3 >we recall that the harmonic has a similar spatial struc­
ture also when a beam is focused by a long-focus cylindrical 
lens, see formula (35). 

FIG. 3. Spatial structure of radiation of second harmonic 
(curve 1) excited at the output of a nonlinear crystal by a 
short-focus lens. Ordinates- square of the modulus of 
the function q,, proportional to the intensity of the 
second harmonic; abscissa- normalized value of the 
observation angle e = 2{:3k0 8L/1T (8 = (x- f:3L/2)z-'). 
The figure also shows for comparison the spatial structure 
of the harmonic generated as a result of one-dimensional 
interactions in a diverging beam (curve 2), and a plot of e-· 
(curve 3). 

9 10 

interactions. The width of th~ principal maximum 
of curve 1 is of the order of 80 ; with further in­
crease of e the intensity of the harmonic de­
creases approximat~ly like e-1, and with increas­
ing deviation from e = 0 the efficiency of the two­
dimensional interaction decreases. The limiting 
value Blim at which two-dimensional interaction is 
still observed is deter~ined by formula (39); we 
note that the value of e lim obtained in this man­
ner coincides exactly with the value determined by 
formula (27b), which has been derived from purely 
geometric considerations. At small values of the 
anisotropy angle f3 « a0, such that 2{3a0k~ Z2 « 1, 
the width of the angular spectrum of the second 
harmonic is determined by the value of the angle 
a 0, within the limits of which <I>"" 1 and conse­
quently 

for lSI< ao 

for lSI> ao' 
( 41) 

the second-harmonic power is in this case equal to 

( 42) 

It is important to emphasize that in this case the 
second-harmonic power increases like the first 
power of the distance Z2 even when a 0 » {3, but the 
reason now is no longer the dispersion of the me­
dium (see (34)), but the decrease in the amplitude 
of the cylindrical fundamental-radiation wave. 

Using (42) and (33) we can compare the powers 
of the second harmonic at the output of a crystal 
of fixed length when focusing with a long-focus 
lens (divergence az) and a short-focus lens ( Cl!s) 

Pz'" 

Pz' 
( 43) 
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in which connection the use of a long-focus lens is 
preferable. 

When f3 ~ a 0 the angular aperture of the second 
harmonic is determined essentially by the width of 
the maximum of the function <I>, and the total power 
of the harmonic 

P2 = 8n2y2P12[ 1 +~In( SClim))J; (44) 
cbao2ko 4 2 

the rate of growth of the second harmonic is 
slowed down further with increasing distance by 
dispersion, and then becomes logarithmic. 4> 

7. CONCLUSION 

The results enable us to describe in this man­
ner the most essential features of a harmonic in a 
focused beam. The qualitative relations that char­
acterize a transition from a short-focus lens to a 
long-focus lens are in good agreement with data 
given in [ 31 (see also [ 11 J). Focusing such that Zf 
is close to the length of the nonlinear crystal is 
apparently optimal from the energy point of view, 
Although a detailed calculation was made here only 
for cylindrical waves, the conclusions regarding 
the relative roles of one-dimensional and two­
dimensional interactions is valid also for a spher­
ical wave (in this case t...1.e harmonic power gain 
for Zf » L and a0 » f3 in a spherical wave 
amounts to 1) = b2/xt). 

41t is interesting that a similar growth rate is possessed 
also by a spherically diverging wave when a0 >> (3. 

The procedure described makes it possible to 
analyze also many other nonlinear effects with ac­
count of diffraction, such as parametric amplifica­
tion and induced scattering. 
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