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A method is proposed for writing down n- 1 linearly independent second order differential 
operators which commute with the Hamiltonian and with each other in any coordinate system 
in which the variables of the corresponding Schrodinger equation in a Riemann space Rn can 
be separated. The separation constants are the eigenvalues of the operators. The discrete 
and continuous spectra of the hydrogen atom are considered as examples. It is shown that 
operators quadratic in the generators of the group of space motions correspond to coordinate 
systems in which the variables in the wave equation can be separated. 

1. INTRODUCTION 

PoTENTIALS possessing higher symmetries play 
an essential part in the various nuclear models and 
can also be useful in the dynamical models in the 
theory of elementary particles. The problem arises 
of finding the operators commuting with the Hamil
tonian, which are defined in each of the coordinate 
systems where variables can be separated and 
subsequently constructing Lie algebras from these 
operators. In this article a complete set of com
muting operators is obtained in an explicit form by 
means of a general method. Their number is ob
viously equal to the rank of a group for every coor
dinate system where the variables separate in the 
Schrodinger equation and in the wave equation, in 
the space of relativistic velocities. Since the 
Schrodinger equation admits separation of variables 
in the same coordinate systems where the separa
tion of variables of the wave equation in Euclidean 
space can be obtained, we discuss the last case. A 
transition to the operators that correspond to the 
separation of variables in the Schrodinger equation 
is simple. 

We consider also a complete set of commuting 
operators in a three-dimensional space of constant 
positive and negative curvature, for a free motion 
(wave equation). These operators can be applied to 
the solution of the physical problem of Coulomb 
interaction between two bodies in the case of dis
crete and continuous spectrum respectively. 

According to Olevskil [t], in a three-dimensional 
Riemann space of constant positive curvature there 
are six coordinate systems, in which the wave equa
tion admits a complete separation of variables. 

Therefore, for the hydrogen atom (discrete spec
trum), for which the symmetry group is the group 
of motions of a space of constant positive curva
ture, realized on the three-dimensional sphere in 
a four-dimensional space introduced by Fock[ 2J, 
six different complete sets of quantum numbers 
which are the eigenvalues of some operators, are 
possible. 

In the case of a continuous spectrum the sym
metry group of the problem is the homogeneous 
Lorentz group (the group of motions of the three
dimensional Lobachevskil space[ 2 J. There are 34 
coordinate systems in which the variables of the 
wave equation can be separated in this space[!]. 
Thus, in the case of the continuous spectrum of the 
hydrogen atom there are 34 sets of quantum num
bers, which are eigenvalues of the operators for 
which the explicit form is given below. 

2. SEPARATION OF VARIABLES IN THE 
SCHRODINGER EQUATION AND SETS OF 
COMMUTING OPERATORS 

Consider a generalized, time independent 
Schrodinger equation with an arbitrary number 
n ~ 2 of independent variables: 

F[u] = L12u + (E- V)u = 0. (1) 

D-2 is the second differential Beltrami parame
ter (the Beltrami-Laplace operator) relative to 
the fundamental form of the Riemann space. 

In this space 

ds2 = gii(dxi) 2, g = det (gii) =F 0, 

!l2u = ~-~( yggij~). 
-y g f) xi , fJxi 

(2) 
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Equation ~1) is the eigenvalue equation of the energy ... , Qln are the eigenvalues of these operators. 
operator H 

iiu == (-L\2 + V)u = Eu. (1') 

Let us formulate the conditions under which Eq. 
(1) admits the separation of variables in the sys
tem of coordinates (x1, z2, ••• , xn) in the space 
Rn· Equation (1) admits a complete separation of 
variables if it has solutions in the form of the 
product 

n 

U = n U;(xi), (3) 
i=1 

where each of the functions Ui (xi) is a solution of 
an ordinary second-order differential equation. 

Equation (1) admits in the coordinate system 
(x1, x2, ••• , xn) a complete separation of variables 
if and only if there are n_2 functions .Cflij = Cflij (xi) 
and 2n functions fi = fi(x1), Xi= Xi(x1), i, j = 1, 2, 
... , n, which satisfy the conditions 

n 

)"gdet(cp-1) = n h i = 1, 2, ... ' n, (4) 

where cp is the Stackel determinant [a] i.e., the de
terminant with elements Cflij = Cflij (xi). 

The potential V must have the form 
n 

V= S (cp-1)i!X;(xi), (5) 
i=1 

and (1) can be represented as 

" (6) 
i=1 

Here F i is a linear differential operator of second 
order in the i-th independent variable, and corre
sponds to the separated equations (i, j = 1, ... , n): 

1 a ( au J F;[u]=Iaxi /;ax' +(ai(Pii+X;)u=O, (7) 

where Qlt = E and Ql 2, ••• , Qln are separation con
stants. 

On the basis of the form (6), we construct a 
complete set of commuting operators in every co
ordinate system in which (1) admits separation of 
variables. The following theorem is valid. 

Assume that in the coordinate system (x1, x2, 

... , xn) of the space Rn Eq. (1) admits a complete 
separation of variables. Then there are n - 1 
linearly indepe~dent differential operators of 
second order, Xk, k =A2, 3, ... , n, which commute 
with the Hamiltonian Hand with each other: 

A n [ 82 1 aj; a J 
XII.=-,~, (cp-1);;, {axi)2 + j; axi 8x' +Xi (8) 

(k = 2, 3, ... , n). The separation constants Ql 2, Ql 3, 

x~~.u = a~~.u, k = 2, 3, .. ·. ' n. (9) 

Let us introduce a determinant IAijl associated 
with the Stackel determinant I Cflij I, and in which 
e':"~ry element Cflij is replaced with its cofactor 
AlJ. The linear independence of the operators (9) 
is a consequence of the fact that the determinant 

is different from zero when cp "" 0. Obviously 

To prove the theorem we use an expression 
known from linear algebra 

A ill. Ail_ AilAill. = (-1)i+i+l+ll.cpdii1tz, (11) 

where 

d = d(xt, ... , xi-t, xi+\ ... , xi-1, xi+t, ... , x") (12) 

is the minor of order n- 2, obtained from the de
terminant by deleting the i-th and j -th rows and 
k-th and l-th columns (i < j and k < l). 

Consider the operators Xk, which correspond 
to the equations 

, n Aill. 
X~t [u] = ~ -F; [u] = 0, k = 1, 2, ... , n (13) 

i=l cp 

(fork= 1 we have, obviously, the operator F). Let 
us show that the operators Xk commute with one 
another, i.e., 

[XII, Xz) = 0. (14) 

Indeed (k < l), 
; Aill. Ail -

[X~~., Xz] = ~ [ -F;, --Pi] 
i, j=1 Cjl cp 

n ( Aill Ail J " [ Aill. Ail 1 
=~ -Fi,-Fi + ~ -F;,-F3 j. 

i=l Cjl Cjl i. f=l Cjl (f 

'*i 
In consequence of (10) the first sum is zero. Re
grouping the terms in the second sum we obtain 

[X~~., Xz] = -~ {[A ill. Fi, Ail Fi] + [ Ailt Fi, Ail F; ]} 
i=1 Cjl IJl Cjl Cjl 
i>i 

n [( Ai" Ail Ail Ai" ) 
~ --F;--Fi- --Fi--Fi 
•=1 Cjl IJl Cjl IJl 
:>i 

=i( 
i=i 
i>i 
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1 Ai"Ail-AitAP< n 1 
--Fi F;) = ~ ( -F;diihtpi 

cp cp i=! cp 
i>i 

_ ;FidiiklF; )(-1)i+i+k+1=0. 

It is easy to see that the equations Xk [u] = 0 are 
the eigenvalue equations of the operators (8). The 
separation constants ak turn out to be the eigen
values. 

3. THE HYDROGEN ATOM. POSSIBLE SETS OF 
THE QUANTUM NUMBERS 

As an example of the utilization of the proposed 
method of constructing the possible sets of quan
tum numbers, we consider various sets of observa
bles in the case of the discrete and continuous 
spectra of the hydrogen atom. 

Fock[2J has shown that the Schrodinger equation 
for the hydrogen atom in momentum representation 

p2 1 1 W(p')dp' 
2W(p)- 2n2 J jp-p'j2 =EW(p) 

expressed in terms of the new variables 

2PoPi 
£; = 2 + 2 , i = 1, 2, 3; 

Po P 
Po2 - p2 

s•= 2+ 2; Po P 

(15) 

(16) 

where Po= V-2E, and in which the unknown function 
is replaced by 

<D (P) = n -Po-'iz (Po2 + P2) "'¥ (P) 
21'2 ' 

assumes a form of an integral equation for the 
spherical functions of a four-dimensional sphere 
(discrete spectrum), i.e., it becomes equivalent to 
a wave equation in a three-dimensional Riemann 
space of constant positive curvature. Similarly, 
the wave functions of the continuous spectrum are 
determined by a wave equation in Lobachevskil 
space. 

We present here sets of operators, defined in 
each of 34 coordinate systems in which the varia
bles of this equation can be separated. 1l 

3. • 4P'I, (p1) a ( 'J' a \ 
Xz = ------- .· ... '1 lz(p!)-- I 

Pt- pz ap1 \ ap1: 

l)The sets of commuting operators in the systems 1, 10, 
11 and 14 in the space of relativistic velocities were discussed 
in the article of Winternitz et al. [ •], for the systems C, S, H, 
and 0, respectively. The wave functions of continuous spec
trum of the hydrogen atom in one of the coordinate systems 
have been discussed by Perelomov and Popov [•]. 

4-9 2'. 

4P'J, (pi) a ( , a ·) 4P'f, (p2 ) a f , a ) 
Xz=----------,-- pi,(p!)-;- --- - .-1 P-(pz)-- ..• 

Pz - Pt up1 . i.Jp1 P2 - Pt dpz · Dpz 

X3=~2P'i2(pt)_D (P'h(p!)_!- j_PtP'h(p2) iJ ( P'i'(P2)_!__); 
pz- Pt iJfJt. dpt! P2- Pt Dpz . fJp2 

10. 
(12 f) 1(12 (12 

X, = - -- cot 8 -- - ~-- ---, X3 = - i.Jm2 ; 
- 882 fJ8 sin2 8 i.Jcp2 't' 

1 fj2 

fj2 
X- . 
3- -i.Jp-;J.' 

13. 

1 f)2 
17-27. X2 --

- 2 i.Jp321 

(pz- a)P'h (p1) iJ [ , 1' iJ J 
X3=-- -- Ph(pi)(pt-a)"--

(pz- pi) (Pt-a) 'h fJp1 fJp1 

- (p1-a)P'h(p2) _!_[p'i'(oz)(p2-a)'/,_!_J 
(pz- pi) (pz- a)'/, i.Jpz ' i.Jpz 

P2 + P1 - 2a fJZ 
- --~- ----~--

2(p2- a) (p1- a) op32 

28-34. 

2 lSystems 4-9 are combined, because the corresponding ex
pressions for systems 5~9 either coincide with the same ex
pressions in 4 as in systems 5 and 6, or represent particular 
cases of these systems. This remark is valid also for sys
tems 1-2, 17-27, 28-34. 

*cth = coth; sh = sinh. 
tth = tanh; ch = cosh. 
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+ (Pt + P3) Q11' (p2) fJ 

(Pt- p2) (p3- p2) fJp2 

X ( Q1ft(p2)_a_ J + (P2 +_~Q~i•(p3)_~( Qlf•(p3)_!__ \)' 
fJp2 (p2- P3) (Pt- P3) fJp3 iJp3 

X3 = P2P3Q1f'(Pt)_~( Qlf•(ot)- i!__ J 
(p1- p2) (p3- pt) fJp1 - ' OPt' 

+ ____£:_P~~(~_2_L _ _!_____ 

(Pt- pz) (p2- P3) fJp2 

I a \ PtPz011' (p3) a ( I a ) X Qi•(pz)- I+---- Q!.(p3) - , 
fJpz! ( P2 - P3) ( P3 - Pt) fJp3 fJp3 

Q(p) == (p-a)(p-b)(p-c)(p-d). 

The designations 1-34 correspond to the classi
fication of Olevskil [t]. The systems 1, 3, 10, 17, 
18 and 28 refer also to a space of constant positive 
curvature (discrete spectrum of hydrogen atom). 

dinates of rotation) in which the variables in the 
wave equation can be separated-conical, paraboloi
dal, and ellipsoidal. A full account of the results is 
given in [6]. P and L are here the operators of 
linear and angular momentum respectively. 

I. Conical coordinates: 

X2 = Lx2 + Ly2 + L,2, X3 = b2Ly2 + c2L,2. 

II. Paraboloidal coordinates: 

X2 = 1/4Lz2 + 1/2b(LxPy + PyLx) - 1/2c(LuPx + PxLu) 

- bcP,2 = 1!4L,2 - bcP,2 + [LQ],- [QL],, 

Q = 1/2cPx + 1/2bPy + P,, 

X 3 = 112[LP],- 112[PL],- c(Pi + P,2) - b(Py2- p,2}. 

III. Ellipsoidal coordinates: 

X2 = b2Li + c2L,2 + b2c2Pi, 

4. ELLIPSOIDAL COORDINATES AND THE GROUP X3 = -Lx2 - Li- L,2 - (c2 + b2)Px2 - &Pl- b2Pz2, 

OF MOTIONS OF SPACE 

Consider, for example, the operators corre
sponding to the separation of variables in the wave 
equation in a three-dimensional Euclidean space. 
In this case, as is well known, there are eleven 
coordinate systems in which variables can be 
separated, consisting of confocal quadric surfaces 
and their degenerate forms. It turns out that the 
operators that correspond to conserved quantities 
and have definite values in the states described by 
the corresponding systems of eigenfunctions are 
quadratic polynomials in the generators of the 
group of motions of the Euclidean space. For the 
purpose of illustration let us give the expressions 
for these operators in the three most general coor
dinate systems (i.e., not cylindrical and not coor-
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