
SOVIET PHYSICS JETP VOLUME 24, NUMBER 4 APRIL, 1967 

THE NATURE OF THE CENTRAL BODY IN THE SCHWARZSCHILD SOLUTION 

M. E. GERTSENSHTEIN 

Institute of Physicotechnical and Radiotechnical Measurements 

Submitted to JETP editor March 22, 1966 

J. Exptl. Theoret. Phys. (U.S.S.R.) 51, 1127-1134 (October, 1966) 

When spherical symmetry is assumed the requirement ds2 :::: 0 for the matter of the central 
body leads to an oscillatory character of the motion, independently of the equation of state. 
We consider the motion of dustlike matter with zero pressure. In the nonrelativistic case the 
motion is oscillatory, and in the transition from contraction to expansion particles pass 
through the center. It is shown that when quantum effects are not taken into account at the 
singular point the oscillatory character of the motion is present also in the relativistic case, 
and the maximum radius rmax must be larger than the gravitational radius r 0• The possibility 
of observation of the oscillatory motion by an external observer is discussed. With the puls­
ating solution the boundary between the R and T regions is not stationary and does not pass 
through vacuum (g00 "'-gifl, and therefore the integral for t-the time of motion of a light ray 
to the R-T boundary-converges, t < 00 , and consequently the central body can be observed 
from the R region, and loss of energy by radiation is not forbidden. As energy is radiated 
away rmax- r 0; the time for the energy to be radiated away can be larger than the charac­
teristic time rmax/c by several orders of magnitude. 

1. THE CAUSALITY PRINCIPLE IN GENERAL 
RELATIVITY THEORY 

THE metric for a spherically symmetrical gravi­
tational field in empty space is described by the 
Schwarzschild solution[!]: 

ds2 = (1 - r0 I r) &dt2 - (1 - r0 I r)-1dr2- r2dcr2, 

ro = 2kM I c2, dcr2 = d82 + sin2 8dql2, 
O<r<oo, 0<8<:n:, O<w<2:n:. (1) 
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FIG. 1 

The coordinate r is defined so that the length of the 
circumference is 21rr and the area of the sphere is 
4n2• This metric has two singularities: at r == r 0 

and at r == 0. The singularity at r == r 0 is nonphys­
ical and can be removed by a transformation of 
coordinates. There are a number of papers devo­
ted to the study of the singularity at r == r 0)HJ 

The location of the light cones for the metric (1) 
in the Schwarzschild coordinates is shown in Fig. 
1. Timelike intervals are shaded. For r < r 0 the 
only possible motion is toward the center or away 
from it, since from the condition that the interval 
be positive it follows that 

The interval of the central singularity is spacelike. 
It can be seen directly from Fig. 1 that the world 
line of the central body lies outside the light cone. 
Owing to the invariance of the interval the condition 
ds 2 < 0 is of a physical nature and cannot be re­
moved by a coordinate transformation. 

(ur)2 = (dr I ds) 2 =I= 0. (2) 

Let us now consider the central singularity 
r == 0. As was pointed out by Synge,[s] for a central 
body at rest 

dt =I= 0, dr = 0, ds2 -+ -oo. (3) 

We recall that in special relativity we have for 
any material body[1] 

(4) 

Violation of the inequality (4) in special relativity 
theory leads to ultralight velocities and to violation 
of the causality principle. 

754 
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FIG. 2 

Physical objects with spacelike intervals con­
tradict the fundamentals of both general and spec­
ial relativity theory. By means of them one can 
realize a signal into the past.[1,s] The fact that 
such an object is known in only one case-the cen­
tral body of the Schwarzschild solution-and that 
despite the small lower limit on the mass set by 
quantum theory, 10- 5g, it cannot be produced under 
laboratory conditions, does not remove the logical 
contradictions of the theory. Therefore in general 
relativity theory (GRT) there are two possibilities. 

1. The introduction of a new class of physical 
objects with space like intervals ( 3), which exist at 
singular points of the gravitational field, where 
Rik = co. The question of the equation of state of 
the matter at these singular points remains open. [7] 

The principle of causality is secured with a supple­
mentary condition: the geodesic world lines of 
ordinary bodies can only either end at a singularity 
(collapse), or else begin at one (anti collapse) 
(Fig. 2, a). Passage of geodesic lines through a 
singularity 0 is forbidden, [7] and therefore the 
''singularity'' cannot serve for the transmission of 
signals between ordinary bodies. 

2. The logical contradiction (3) is a consequence 
of the assumption that the solution is a static one. 
Therefore we assume that the source of the 
Schwarzschild field is not a static object, but a 
nonstationary one composed of ordinary matter 
moving in such a way that the condition (4) is satis­
fied for it. Along with this the external field is 
still a static one. [1] Termination of geodesic lines 
is not permitted, as in special relativity theory 
(Fig. 2, b). In the present paper it will be shown 
that this point of view is free from contradiction. 

The condition (4) is necessary but not sufficient. 
To satisfy the causality principle all velocity four­
vectors must lie inside the upper sheet of the light 
cone (there must be no trajectories going into the 
past). In the special theory of relativity, in which 
there is absolute parallelism, it is easy to formu­
late this condition in an invariant way; in the gen­
eral theory of relativity there does not exist an 
invariant definition of the interior of the upper 
sheet.[7J 

Let us consider the structure of the light cones 
near the stationary boundary between the R and T 
regions (Fig. 3). For radial motion near the boun­
dary we have 

e > 0, R region; 
8 < 0, T region; 

8 = 0, boundary between Rand T regions. 

The light cone is determined by the equations 
dt/dE = ± r 0/ E. In Fig. 3 the timelike regions are 
shaded. 

Let A and A1 be the upper and lower regions of 
the light cone in the R region, and let B and B1 be 
the two timelike regions in the T region. For the 
case of collapse we have the correspondence 

A ,._, B, At ..._,. B11 

and for anticollapse [7 J 

(6) 

(7) 

We shall show that it is impossible to give an un­
ambiguous definition of interior of the upper sheet 
of the light cone in the entire space, including the 
T region. Let a test particle emerge from the 
singular point (anticollapse[7]). For it the interior 
of the upper light cone is a region directed away 
from the center, according to (7). If the energy is 
insufficient for the particle to go off to infinity, in 
the R region the particle turns back toward the 
center. After the return to the T region there is 
collapse, and the correspondence is established in 
accordance with (6). The scheme of motion is 
shown in Fig. 4. The "upper" regions of the light 
cone are shaded. 

To satisfy the causality principle we require 
that in the R region the condition 

d1: I dt ~ o, (8) 

hold, where 7 is the proper time and t is the time 
of an observer at infinity. We also require that at 
nonsingular points of the T region the velocity 
vectors of particles lie inside only one of the 
sheets of the light cone. This requirement is 
evoked by the wish that the properties of a freely 
falling system in the R region and the T region 
should be the same; there is no more rigorous 
basis for this requirement. 

The stationary boundary E = 0 is a singular point 
of the coordinate system, a caustic. [S] All of the 
tangents are parallel to the boundary, and it would 

ct /{ 
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FIG. 4 

seem that passage through the boundary is impossi­
ble. This assertion, however, is due to the appar­
ent (nonphysical) singularity of the coordinate 
system. As is shown by a treat:inent in the freely 
falling (contracting or expanding) system of 
Lemaftre, [7] passage is possible, and the observer 
does not even notice the R- T boundary.r4J If the 
boundary between the R and T regions is not sta­
tionary and is not located in vacuum, passage is 
also possible according to the time of an observer 
at infinity (see below, Sec. 3). 

2. PULSATION OF THE SCHWARZSCHILD CEN­
TRAL BODY 

We shall construct the world lines of the 
Schwarzschild central body in such a way that the 
conditions (4) and (8) are satisfied. For this pur­
pose we shall have to define a coordinate system. 

We shall see later that in a nonstationary 
spherically symmetrical solution "the matter pul­
sates," and at the greatest contraction particles 
pass through the center of symmetry, which is the 
origin of the coordinates. [9 J In ordinary flat three­
dimensional space the spherical coordinate system 
is inconvenient because the polar angles change 
discontinuously when a particle passes through the 
origin. Therefore it is convenient to define the 
spherical coordinates by the condition 

-oo < r < +=, 0 ~ 8 ~ :rt, 0 ~ cp ~ n. (9) 

Then in passage through the center the radius 
changes sign and the polar angles are continuous 
functions. With this condition the metric ( 1) is 

( ro ) ( r0 )-
1 

ds2 = 1 - -- c2 dt" - 1 - - dr2 - r2da2 .. 

.. lrl · lrl 
( 10) 

What exactly is a nonstationary spherically 
symmetrical object? The metric outside the spher­
ical ball is always of the Schwarzschild form, and 
therefore the particles of a spherical shell of the 
ball move in a space with the metric ( 1 0). Starting 
from the positions of the light cones, it is easy to 
construct the world lines of a spherical shell of 
the ball. The world lines constructed in the 
Schwarzschild coordinates (Fig. 1) describe spheri­
cally symmetrical pulsations of the ball, with the 

maximum radius of the ball larger than or equal to 
the gravitational radius r 0• The minimum radius 
is equal to zero, and all of the particles pass 
through the center simultaneously. The reason for 
this last fact is that at every nonsingular point of 
space the velocity four-vectors of the particles 
must lie inside only one sheet of the light cone. In 
Fig. 3 the future is directed upward and (8) holds 
in the R region. By what was said at the end of 
Sec. 1, Fig. 1 describes the pulsating central body 
only qualitatively; the scale on the t axis is non­
uniform. The quantitative relations will be presen­
ted in a separate paper. It follows from the condi­
tion ( 4) that the matter in the T region cannot come 
to a stop, independently of whether or not it reaches 
the singularity. [a' !O] 

We shall now show that the picture drawn in 
Fig. 1 does not contradict the equations of motion. 
It is natural, following[ 7J and[!!], to begin the dis­
cussion with the nonrelativistic case of dustlike 
matter. We imagine a spherical dust cloud whose 
particles attract each other according to Newton's 
law. The cloud as a whole begins to contract, and 
does so as long as there is no effect of other for­
ces. If there are no other forces, the cloud will 
contract without limit, with the potential energy in 
the selfconsistent gravitational field of the particles 
changing into kinetic energy of the motion. If the 
initial density of the matter was everywhere the 
same, then all of the particles reach the center 
simultaneously. In this state the system has mini­
mum potential energy and maximum kinetic energy, 
like a pendulum in its lowest position. Remaining 
in the framework of nonrelativistic mechanics, we 
can easily see that the contraction is succeeded by 
an expansion-the potential energy will increase at 
the expense of the kinetic energy. 

We have been obliged to present this elementary 
argument, since one usually encounters in the 
literature the assertion that the contraction of a 
dust cloud to a point is irreversible in the nonrela­
tivistic case.E11 J We emphasize that in passing, in 
the case of ideal symmetry, from contraction to 
expansion the particles do not stop at the center, 
but fly through it with infinite speed (v = dr/dt 
= 00). [ 9 J If the matter is charged, then in the rela­
tivistic case it is possible to have a transition from 
contraction to expansion with the particles brought 
to a stop (v = dr/dt = O).r12 J The observed pattern 
does not depend, however, on the manner in which 
the passage from contraction to expansion has oc­
curred, in particular in noncentral motion, and 
therefore the transition from contraction to expan­
sion is the same for neutral and for weakly charged 
matter. 
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FIG. 5 

Let us consider the equation of spherically sym­
metrical motion. We confine ourselves to the case 
of spherical symmetry only because in GRT only 
the spherically symmetrical motion of matter has 
been studied in detail, [4 ) so that it is easy to com­
pare the results. Actually a spherically symmetri­
cal contraction is unstable both in GRT and in 
classical mechanics. 

The equation of motion of a layer of radius r(R), 
where R is the radius at the initial time, is 

tPr I dt2 = -kM I r2, (11) 

where M is the mass inside the layer. If the mass 
does not change in the process of motion-and only 
in this case-we arrive at the energy integral 

f2=2[E(R)+ kM(R)]. 
lrl ' 

where M depends only on R. 

dM 
-=0 
dt ' 

(12) 

Let us consider in more detail the condition that 
the mass is constant inside the layer, Eq. ( 12). Let 
Rt and R2 be the initial coordinates of two particular 
layers. Figure 5 shows plots of the functions 

r1 = r(R~, t), rz = r(Rz, t), R1 > R2• ( 13) 

Constancy of the mass means that particles do not 
enter the inside of the layer and do not emerge 
from it. Owing to the assumption of spherical sym­
metry it is necessary for constancy of the mass 
that we always have lr11 > lr21. In other words, (12) 
is satisfied only for motions of types a and b in 
Fig. 5. For Fig. 5, c, d, dM/dt "'0, and the rela­
tion (10) (sic) ceases to hold for t > tk· 

In classical mechanics absolute space and abso­
lute time exist and there is no question about 
separating the phenomenon and the coordinate sys­
tem. In GRT the investigation is usually conducted 
in the co moving coordinate system.C1' 13 J It is easy 
to see that when the world lines intersect at r = 0 
there is a singular point; when intersection occurs 
at r "' 0 the comoving coordinate system is non­
unique, and the formulas for going over to it must 
contain discontinuous functions. 

In the framework of the spherically symmetrical 
problem, on passage through the singular point 
r = 0 the density p becomes infinite and the question 
arises as to the applicability and meaning of the 
condition (4) and of the equations of GRT them-

selves, owing to quantum effects for p > 1033 g/cm3. 
Nevertheless all of the subsequent treatment is 
based on the fundamental assumption that the quan­
tum theory of gravitation does not qualitatively 
change the results. 

Let us consider the relativistic problem. For 
centrally symmetrical motion of dustlike matter 
the interval in the co moving system is given by[1 J 

ds2 = c2d-r:2 - r2(R, 1:)da2 - e"'dR2, (14) 

where r is the radius vector, defined so that the 
area of the sphere of radius r is 47rT2• The equa­
tions of GRT have the first integral [t J 

f 2 = f(R) + F(R) I irl. (15) 

It follows from a comparison of ( 15) and ( 12) that 
the integral ( 15) is valid only when there is no self­
intersection, i.e., for cases a, b of Fig. 5. For 
cases c and d the integral (15) does not hold. Case 
a is excluded because there are no forces that can 
stop the contraction.[7•9] For cases c and d the 
integral ( 15) and the solutions that follow from it 
are valid only up to the moment tk at which the 
world lines intersect. For case d ( 15) is valid only 
up to the time the particles pass through the cen­
ter. The use of the integral (15) in cases c and d 
after the passage through the center implicitly as­
sumes that the matter stops at the center, but there 
is no justification for this assumption. Case b, in 
which all the particles pass through the center 
simultaneously, leads to an oscillating solution.[sJ 

Accordingly, when the second point of view is 
consistently developed the solution is a periodic 
function of the proper time; contraction passes 
over into expansion. 

Since the maximum radius rmax of the pulsa­
tions exceeds r 0, the static Schwarzschild solution 
cannot be applied for r < r 0• The relativistic os­
cillatory collapse differs greatly from the small 
vibrations studied in mechanics-there is no posi­
tion of equilibrium, stable or unstable, and the 
amplitude of the oscillations must exceed r 0• 

3. PULSATING COLLAPSE FROM THE POINT OF 
VIEW OF AN EXTERNAL OBSERVER 

Since in oscillatory collapse the matter goes 
out into the R region when it expands, it is to be 
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expected that we shall observe oscillatory collapse 
from outside, and loss of energy by radiation is 
not forbidden. This was pointed out without proof 
at the end of[t4J, and therefore we think it appropri­
ate to present a proof. 

It is well known that from the point of view of an 
external observer a ray of light, or a freely falling 
body, reaches the Schwarzschild sphere at 
t- 00 .[t.7J This result is easily derived from (5). 
If r 0 does not depend on t, that is if the boundary 
of the Rand T regions is stationary, the equation 
of a ray of light will be 

r dr ro~de ro t= _, =- _,..,._lne--+-oo 
• ( -goog--;,_1) ''• c e c e-.oo • 

The integral diverges logarithmically. The logar­
ithmic divergence has appeared because for the 
Schwarzschild solution g00 = gjJ and the root can be 
taken; the boundary of the R and T regions in the 
Schwarzschild solution is stationary and is located 
in vacuum. We shall show that if either of these 
assumptions is dropped the logarithmic divergence 
disappears. We consider first the case of a moving 
boundary: 

ro = ro(t), 8 = r- ro(t), eo(t) = ro(t) - ro(t), 

(16) 

where the bar denotes averaging over the Schwarz­
schild time. Then, when we use (5), the equations 
of the world lines of light are 

de 1 e eo(t) 
~ =- (-goo~.t)''•= --+--. (17) 
cd t c · 11 ro r0 

Solving ( 17), we get for the world line going to the 
Schwarzschild sphere 

1 t 
e(t) = e(O) e-t/cr,- _ ~ eo(s) e-<HJ/cr, ds. ( 18) 

ro 0 

We shall show that this world line crosses the 
mean position of the boundary of the R and T reg­
ions, r = ro. The equation E = 0 reduces to the form 

e(O)-_!_ ~ eo(s)e-vcrods = o. (19) 
ro 

The periodic function E0U;j can be expanded in a 
Fourier series 

. 
llok = eo,-k· (20) 

The integral of any one of the terms of (20) diver­
ges at the upper limit, and consequently (19) has 
solutions for finite t. 

If the boundary of the R and T regions is in a 

region filled with matter, then -g!l >" g00 ,[tJ and in 
the integral for t we get 

ro dr 
t = r <co, goo(ro) = 0, (21) 

.l (-goog-1)'1• 
11 

and the logarithmic divergence disappears. Ac­
cordingly, inability to observe the R- T boundary 
from the R region is due to special features of the 
Schwarzschild solution and does not occur in the 
general case. For irreversible collapse the pres­
ence of a quadrupole moment[tsJ also has the con­
sequence that the time (21) is finite. When the inte­
gral (21) converges the world lines in Figs. 1 and 4 
can cross the R - T boundary. If the boundaries 
between the Rand T regions are interrupted, this 
also leads to a finite value oft. The proof that it is 
impossible to observe the collapse from the R 
region is based on the divergence of the integral 
fort. The convergence of the integral (21) means 
that periodic collapse with rmax > r 0 can be ob­
served from the R region. In our opinion this re­
sult also follows from the treatment in[13 J. 

Accordingly, in the pulsating model of the cen­
tral body exchange of information between the R 
and T regions (R - T) is possible, whereas it is 
usually stated[4J that only a one-way transfer of 
information is possible (R - T). We shall show 
that the necessity of a two-way exchange of informa­
tion (R - T) follows from the principle of equiva­
lence. The coordinates of a collapsing star can be 
determined by an outside observer from the motion 
of planets around it, which are in the R region at 
large distances, where the field is Newtonian. Let 
an external uniform gravitational field act on a 
planetary system with a collapsing central star. 
This field penetrates from the R region into the T 
region of the collapsing mass (R - T) and changes 
its motion. The motion of the planets must occur 
around the new position of the central body, and 
therefore information about the new position must 
be transferred into the R region by the gravitational 
field (T - R). If any transformation of information 
(T - R) is forbidden, then the gravitational field of 
a collapsing star does not change when there is a 
change of its motion, and the planets move around 
the old position of the star without reacting to the 
external uniform gravitational field, which contra­
dicts the principle of equivalence. This contradic­
tion proves the necessity of two-way exchange of 
information (R- T). 

In[12 J, starting from the impossibility of two-way 
exchange of information (R - T), it was shown that 
the R region around a collapsing body has more 
than one sheet. The meaning of a many-sheeted 
physical space, Euclidean at infinity, is unclear. 
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For each collapsing star there would have to be its 
own multiply connected space. Since the two-way 
exchange of information (R - T) is indeed not im­
possible, there is no need to introduce a many­
sheeted external space; an outside observer sees 
both the contraction and the expansion. 

Accordingly, for a periodically collapsing body 
there is no closing-in on itself, and it is not im­
possible for large amounts of energy to be radiated 
away. As the energy is removed by radiation the 
total energy of the collapsing mass decreases and 
rmax - r 0• Accordingly the collapsing mass slowly 
goes down to the Schwarzschild sphere, and the 
time for the radiation loss can be several orders 
of magnitude larger than the characteristic time 
r 0/c. 
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