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The temperature dependence of the density Nopt z of conduction electrons in polyvalent metals, 
determined by an optical method, is considered. It is shown that an increase in the intensity 
of the thermal vibrations of the lattice with increasing temperature leads to a reduction in the 
Fourier components of the pseudopotential, which, in turn, diminishes the difference 
Nval- N0 pt (Nval is the density of valence electrons), i.e., an increase in Nopt· The depen
dence of the difference Nval- Nopt on the temperature is governed by the Debye-Waller 
factor. The temperature dependence of Nopt• obtained by optical and x-ray methods, are 
compared for aluminum and lead. 

IT is widely held that the density of conduction 
electrons in metals is independent of temperature. 
This is indeed true of monovalent metals, in which 
the influence of the periodic lattice potential is 
weak. The situation is different in polyvalent me
tals. Measurements of the optical constants of 
polyvalent metals Pb, Sn, Al, and In, carried out at 
helium, nitrogen, and room temperatures,U-4J 
have shown that the density of conduction electrons 
Nopt• determined by an optical method, increases 
with increasing temperature. Between helium and 
room temperatures, this increase amounts to 
5-20%. In the present paper, we shall show that 
the value of Nopt depends on the thermal vibrations 
of the lattice and that this determines the tempera
ture dependence of N0 pt· 

The influence of the periodic lattice potential on 
the optical properties of metals has been deter
mined in[ 5J. The following relationship has been 
obtained for Nopt of cubic metals, using the pseudo
potential density: 

( 1) 

(la) 

Here, Nval is the density of valence electrons; 
Nopt is the density of conduction electrons, deter
mined by an optical method, Pg = ( Y2 /27Tng/l ; g is 
the reciprocal lattice vector; p~ is the Fermi 
momentum of free electrons for Nval; E~ is the 
Fermi energy of the same free electrons; V g is the 
Fourier component of the pseudopotential. Summa-

tion is carried out over all the reciprocal lattice 
vectors for which V g >" 0 and Pg ="" P1c· 

The formulas (1) and (la) are derived on the as
sumption of a static lattice potential without any 
allowance for its vibrations. We shall allow for the 
thermal vibrations of the lattice. Using the theory 
of weakly bound electrons, we shall represent the 
Fourier component of the pseudopotential in the 
following form :[G-B J 

ll(K) = F(K)U(K). (2) 

Here, K is the wave number; U(K) is the Fourier 
component of the self-consistent atomic potential; 
F(K) is a structure factor, which depends only on 
the ion positions:[9J 

F (K) = __!__ ~ e-iKJ (3) 
N~ 

I 

(N is the number of unit cells per unit volume; l is 
the lattice vector corresponding to a site Z). For a 
rigid ideal lattice: 

F (K) = 6Kg, 

V (K) = l.l (K) .SKg' Vg = U (g). 

(4) 

(4a) 

Let us assume that lattice vibrations are excited 
in a crystal. Allowance for these vibrations gives 
rise to a temperature factor e -w in F(K), which is 
known as the Debye-Waller factor. A similar fac
tor governs the intensity of x-ray diffraction 
maxima. [10- 13 l The factor can be derived in the 
usual manner.l9• 10 l The radius vector correspond
ing to a site l will be represented in the form 
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I ' I , I -1 "V ( iql 1- * -iql) i.J = -c- U1 = - LJ UqC - Uq I' . 

q 

( 5) 

Here, Uq is the vector amplitude of the lattice vi
bration having the wave vector q. Then, 

P -iKRJ = e -iKIIT exp \- i [ (Kuq) eiql + (Kuq *) e -iqlJI. ( 6) 

q 

The expression ( 6) contains various products of 
factors of the type e± iq · z. Each such factor repre
sents the creation or annihilation of a phonon. The 
probability of such processes decreases rapidly 
with increase in the order of the process. We shall 
be interested in no-phonon processes. In these 
processes, we have 

II exp \ l = r[( 1 - ~ I Kuq \2 ) 

q q ' 

~exr(- ~ h/KuqJ2) =e-wK, 
q 

TVK= ~ hiKuqJ!. 
q 

Using Eqs. (3), (5), (7), and (8), we obtain 

Hence 

F (K) = _i_ '\_"'1 -iKI _ -WK• - N LJ e - e uKg· 
I 

V (K) = e-WK U (K) 6Kg, 

Vg = e-wgu (g). 

(7) 

(8) 

( 9) 

(lOa) 
(lOb) 

We have thus found that the Fourier components 
of the pesueopotential depend on temperature. This 
should lead to a temperature dependence of N0 pt· 
Using Eqs. (1), (la), and (lOb), we obtain 

Nval-Nopt = "V~ PI!. ~g/e-Wg(T)(_i_+ q>g), (lla) 
N LJ4p 0 E 0 2 n val g F F 

_ _1 2(pg/ PF0 ) [1- Pgl P/J eWg(T) 
(jlg-tan JUg\/El"o (llb) 

The Fourier components of the pseudopotential be
come smaller when the temperature is increased. 
This gives rise to an increase in Nopt(T). In the 
limit, at very high temperatures, Nopt - Nval· 

For a cubic crystal, W g is proportional to the 
mean square value of the atomic displacements U2. 
We shall consider the dependence W(T) and estimate 
the value of W. For this purpose, we shall use the 
Debye model in which a solid is regarded as a con
tinuous medium, and a limiting phonon momentum 
Qn as well as a limiting phonon energy, governed 
by the De bye temperature ®, are introduced. In this 
model 

6/T 

3 ft2 ( T \ 2 ~ ( z z ) W(T) =-K2-- -I _--+-. dz. 
2 M k8 8 I ez - 1 :!. 

0 

(12) 

Here, k is Boltzmann constant, M is the atomic 
mass. At T » ® 

3 h2 ( T) W(T) ~-K2-- - ', 
2 MkB e 

(12a) 

but when T- 0 

3 h2 

W(O) = SKz Mk(~. ( 12b) 

We note that we should use the relationship Kn = gn 
= 2pg to go over to the notation employed in Eqs. 
( 1) and ( 11). Then 

3 Pr!,2 1 
TV (0) = T M kEl . ( 12c) 

When T - 0, the value of W tends to a finite limit. 
This is associated with the zeroth vibrations of the 
lattice. 

We shall use the notation 
1 ( zdz x 

<p(x} =--;- J ez-1 +4· 
0 

( 13) 

The function cp(x) differs from the Debye function 
by an amount x/ 4. The values of the De bye function 
have been tabulated in many papers, in particular 
in[to, 13 ]. Using Eqs. (12), (12b) and (13), we obtain 

W(T) = W(O) 4cp(x), 
r 

e 
x=-

T 
( 14) 

The figure shows the dependence of W(T)/W(O) on 
Tj®. 
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We shall estimate the variation of Nopt associa
ted with the Debye-Waller factor, and we shall com
pare it with experiment. To determine the value of 
W, we shall use the results found in the determina
tion of the temperature factor in the x-ray region. 
X-ray measurements, carried out over a wide range 
of temperatures, make it possible to determine the 
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temperature dependence of Elx-ray for cubic crys
tals. Using the average value of this parameter in 
the temperature range 293-78°K and substituting it 
into Eqs. (12b) and (14), we obtain W(Tcl and 
W(TN) (Tc = 293oK and TN= 78°K). Moreover, we 
take into account that q;g/" ~ 1/ 2 in Eq. (lla) and 
introduce the average value W g(T) [the averaging 
is carried out over all indices g which occur in 
Eq.:Jll]. Since Wg(T) « 1, we use the relationship 
-W(T) -

e ~ 1- W(T). Consequently, we have 

N opt(Tc) - 1 :=:::; ( __ }! __ v~- 1.) [W (Tc) - W (TN)]. ( 15) 
Nopt(TN) Nopt (TN) 

To compare the theory with experiment we need 
to know the temperature factors determined from 
the x-ray and optical measurements to be obtained 
for the same metals. At present, such information 
is available only for Aland Pb.f1•2• 14 J The results 
on the dependence of Nopt(T), obtained from the 
x-ray and optical measurements (T C = 293°K, 
TN= 78°K), are given below: 

Metal: Al Pb 

e OK· x-ray• · 405 89 

Nval/Nopt(TN) - 1 1.26 2.42 

[Nopt<Tc)/Nopt(TN)- 1lx-ray 0.037 0.110 

[Nopt(Tc)/Nopt(TN)- llopt 0.038 0.052 

In calculations employing Eq. (15), we used the 
value of Nval/Nopt(T N) - 1 obtained from the opti
cal experiments. As the average value W g(T), we 
used the value corresponding to the index g for 
which the influence of V g on Nopt was strongest. 
The values of this index were as follows: W ~ W200 

for Al and W ~ W 111 for Pb. 
The results reported here show good agreement 

between the x-ray and optical values for Al, but for 
Pb the x-ray value is considerably greater than the 
optical value. The reason for this discrepancy is 
not yet clear. 

Optical measurements show that the temperature 
dependence of Nopt for In and Snr3,4J is several 
times stronger than that for Al and Pb. Both In 
and Sn have the tetragonal structure. Unfortunately, 
no x-ray-measured values of the temperature fac
tor are available for these metals. Measurements 
of the optical constants of In, carried out in the 
visible and near infrared region at room and helium 
temperatures,f4J have indicated a temperature de
pendence of the Fourier components of the pseudo
potential, which was in agreement with the depen
dence N0 pt(T). 

The temperature dependence of N0 pt should be 
considerably stronger at high temperatures than at 
low temperatures. The results of a determination 
of the optical constants of W at high temperatures, 
reported inf 15J, are in qualitative agreement with 
this conclusion. Unfortunately, the optical constants 
of W were determined only in the near infrared 
region, in which the contribution of the interband 
transitions may have been considerable. 

In conclusion, the author expresses his gratitude 
to H. A. Suris and A. G. Khachaturyan for discuss
ing the problems referred to in the present paper. 
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