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The electronic terms and wave functions of the molecular ion Ht in the ground and upper 
states are studied by the comparison method, the distance between the nuclei being assumed 
large. Exponential splitting of g and u terms is found with an accuracy to O(R-2e -R/n). The 
results are compared with numerical calculations and the limits of applicability of the theory 
are discussed. The results can be employed for studying collisions between protons and ex­
cited hydrogen atoms. 

THE molecular ion H; is of great theoretical and 
practical interest. Knowledge of its terms is im­
portant for the study of the mechanisms of dissoci­
ation accompanied by formation of highly excited H 
atoms; the manner in which the symmetrical and 
antisymmetrical terms move apart asymptotically 
at large internuclear distances determines the res­
onant charge exchange in slow H+ + H collisions. 
The H; ion, when viewed as the simplest single­
electron molecular system, is also the basic model 
for checking approximate quantum-chemistry 
methods. 

Several recently published theoretical papers 
are devoted to the study of the properties of H; at 
large internuclear distances[ 1- 51 and also to calcu­
lations. [s-a 1 In [ 1• 21 , attention was called to the 
fact that the LCAOU method gives an asymptoti­
cally incorrect value of the splitting of the terms 
1sag and 2pau, in connection with the fact that the 
main contribution to this splitting is made by the 
subbarrier region between the centers. It is there­
fore important to determine more accurately the 
wave functions in this region, as was indeed done 
in [ 1• 21 , where the correct value of the splitting 
was obtained for the lower terms. Smirnov[ 3l 

generalized the formula for term splitting to in­
clude excited states. Ovchinnikov and Sukhanov[ 41 

proposed a method for calculating the succeeding 
terms of the asymptotics of the wave functions and 
the terms of the states 1sag and 2paU> and wrote 
out a formula for the spacing of these terms, ac­
curate to O(R-2e-R ). We note that none of the cited 

l)Method of constructing molecular orbitals in the form of a 
linear combination of atomic orbits. 

papers gives exact criteria for the applicability of 
the derived expressions. 

In this paper we construct uniform asymptotic 
expressions for the wave functions, and obtain the 
magnitude and splitting of the ground and excited 
terms of the H; ion with an accuracy higher than in 
all the preceding calculations. We also write out 
the limits of applicability of the obtained expres­
sions. We use here the standard-equation method 
with modifications proposed by one of the auth­
ors. [ 9• 101 A mathematical derivation of the expan­
sions will be published elsewhere. 

1. FORMULATION OF PROBLEM 

The stationary Schrodinger equation for the H; 
in the adiabatic approximation 

(~L\ +__!__ +-1 +E) 'I'= 0 
'2 ra rb 

is separable in prolate spheroidal coordinates 
ra + rb ra- rb 

6 = -R-(1 :s;; 6 <oo), TJ = -R-(-1 :s;; TJ :s;; 1), 

cp = arctg_!(O :s;; <p < 2n). 
:c 

Here R is the internuclear distance and ra and rb 
is the distance from the electron to the centers a 
and b, respectively. 

We seek a wave function in the form 

U(6) V(TJ) e±imop 
'I'= -=--=--=, l'SZ- 1l'1- TJ2l'2n 

(1) 

and obtain in this case the following equation for the 
functions U(~) and V(TJ ): 

U"+f- h2 + h(p6-t..)+ 1-m2 J U=O (2) 
L 4 !;2 -1 (£,2-1)2 ' 
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[ h2 h'A. 1-m2 J 
V"+ -4+ 1- 112 + (1-TJ2)2 V=O, (3) 

where E = -2/p2 is the energy, h =-v'-2ER, ;>..his 
the separation constant, and m = 0, 1, 2, ... is the 
modulus of the magnetic number. 

In order for w to be a bounded function, the so­
lutions (2) and (3} must satisfy the conditions 

U(~) l~=t = 0, U(~h-+«>-+0. (4) 

V(TJ) 111=±1 = 0. (5) 

Since Eq. (3) and the boundary condition (5) are not 
altered by the substitution 7J- -77, the function 
V(7J) will have a definite parity: Symmetrical solu­
tions will satisfy the conditions 

Vg'l11=o = 0, Vgl 11=-1 = 0, (6) 

and antisymmetrical ones 

Vuii')=O = 0, Vull')=-t = 0. (6 1
) 

Thus, the determination of the function w (L 77, cp) 
reduces to boundary-value problems for the equa­
tions (2) and (3) with conditions ( 4) and (6), and now 
7JE[-1,0]. 

The procedure for obtaining the solution will 
differ somewhat from that used in physics for H;. 
It is customary to obtain independently the separa­
tion constants from (2) and (3) and equate them to 
obtain the energy spectrum of the problem. At the 
same time, in analogy with the spherically­
symmetrical case, it is more convenient to substi­
tute into the quasi-radial equation (2) the separa­
tion constant obtained from the quasi-angular equa­
tion (3) (cf. Z(Z + 1)), all the more since (3) does 
not contain the specific Coulomb feature of the 
problem, being an equation for oblate angular 
spheroidal functions. [ 11 • 12 1 

It is more convenient mathematically to assume 
in the intermediate derivations that the independent 
parameter is h, putting E = E (h), R = R(h), and 
;>.. =;>..(h). We shall seek the asymptotic behavior of 
the problems (2), (4), and (3), (6) relative to the 
large parameter h = -v'-2ER, i.e., for large inter­
nuclear distances and not too high states. In the 
final formulas the energy will be expressed in the 
form of a series that depends on R. 

2. METHOD OF FINDING THE ASYMPTOTIC 
FORMS 

The asymptotic form of the boundary value 
problem for the equation 

'¢"(h,x)+h2p2 (E~h,x)'¢(h,x)=0 (7) 

as h- oo is constructed in the following man-
uo l w f" . ner. e 1rst separate the spectral regwn of 

interest to us. We then construct a standard equa­
tion, which should have the same transition points 
as the ini{._al equation on the considered interval of 
variation of the independent variable. By transition 
points we mean here the zeroes and poles of the 
function p 2(E, h, x). In this case, if the distance 
between two points of the transition is of the order 
of O(h -z) and less, they are regarded as one tran­
sition point. To obtain an asymptotic form which is 
uniform with respect to the variable x, it is also 
necessary that the standard equation have at infinity 
a singularity of the same type as the initial equa­
tion. 

The solution of the initial problem is sought in 
the form of an asymptotic series, for which the 
form is specified by the standard solution. There 
are two possibilities here. In the first method, the 
solution is represented by an asymptotic series 
multiplied by the standard solution, and the coeffi­
cients of the expansion are determined in succes­
sion by substituting into the equation. The second 
method was proposed by Cherrl 131 and consists of 
expressing the solution of the initial problem di­
rectly in terms of the standard solution, in which, 
however, the argument is an asymptotic series. The 
second method is preferable in our case, since the 
"quantum conditions" (agreement of the transition 
points of the initial and standard equations) are not 
integral (of the type of the Bohr-Sommerfeld clas­
sical conditions). We note that the obtained asymp­
totic form is not uniform only in the vicinity of the 
zeroes of the solution. 

3. ASYMPTOTIC EXPANSION FOR THE QUASI­
ANGULAR FUNCTIONS. EXPONENTIAL 
SPLITTING OF g AND u FUNCTIONS 

Equation (3) can be regarded as a one-dimen­
sional Schrodinger equation with potential 

h'A. 1-m2 
v(TJ)= ---- . 

1-1]2 (1-1]2)2 

We confine ourselves to the case 

(8) 

i.e., to not very high eigenvalues, lying deep in the 
subbarrier region of the potential v(7J). We must 
then choose as the standard equation the Whittaker 
equation[ 141 

W" + [ _ ~ + hk + 1 - m2 ] W = 0 4 z 4~ (~ 

and seek the solution of (3) and (6) in the form 

V ( 1]) = [ z' ( 1]) ] -'/, M k, m 2 ( hz ( 1]) ) , ( 10) 
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where the function Mk, m;2(hz) is a solution of (9) 
which is regular at zero. (We shall subsequently 
change over to the independent variable x = 1 + 1).) 

We note that if k = ko = n2 + (m + 1)/2, where 
n2 = 0, 1, 2, ... , then the Whittaker functions are 
expressed in terms of Laguerre polynomials, so 
that the function V(x) (10) goes over into the usual 
quasi-angular function of the hydrogen atom in 
parabolic coordinates with number n2• Substituting 
the solution (10) in (1) and using the standard equa­
tion (9), we obtain for z(x) the formal equation 

( z'2 1) 1( A. kz'2) 
4-4 +h 2x(1-x/2) ---;-

T [ 1 z12 J 1 ( 11) 
+ h2 x2(1-x/2) 2 --;z - 2h2 {z,x} = 0• 

where {z, x} = -% (z"/z')2 + z"'/z' is the Schwartz 
derivative and T = (1- m2)/4. We require that the 
transition points coincide, i.e., 

z(x) lx=O = 0, 

which yield a "quantum condition" 

(12) 

A.= 2kz'(O)+~ [ z"(O) -1] (13) 
h z'(O) ' 

containing no integrals. We shall seek the solution 
of (11) with eigenvalues in the form of asymptotic 
expansions 

z( )= ~ zt(x) t..(k)= ~ t..1(k) 
X LJ hl ' LJ hl ' (14) 

1==0 l=O 

and then obtain from (11) a system of recurrent 
differential equations for the function z z(x): 

zo' = 1, 
A.o 2k 

z{ =- x(1-x/2) +--;-• (15) 

zz'-- zt'2 __ 'A_t_ +-2k_( 2z{ -~) +T (1-x/4) 
- 2 x(1-x/2) x x x(1-x/2)' 

••••• 0 •••••••••• 0 •••• 0 •• 0 ••• 0 •• 

and from (13) a system for the eigenvalues A.z (k): 

A.o = 2kzo' (0), 
/..1 = 2kz{ (0)- 2-r, 
A.z = 2kz{ (0) + 2-rz{' (0). 1 (16) 

Successive satisfaction of the conditions (16) 
ensures the existence of solutions for the corre­
sponding equations in (15). It is easy to see that to 
determine A.z(k) it is not necessary to integrate (15) 
exactly, and it is sufficient to determine the first 
two terms of the Taylor series· near x = 0. With 
an aim at taking into account the polarization term 
in the energy, we determine A. accurate to fourth 
order inclusive: 

A,= 2k- 2(k2+T)- 2k(k2+'t') _ _!__ (5k4+6k2T+k2+'t'2) 
h h 2 h3 

- __!_ [ 33 k5 + 23k~ + E k3 + 13 kT2 + 3k't' J + o ( _!__) 
h4 2 2 2 h5; . 

(17) 

The corresponding expansion for z(x) is 

z(x) = x + 2k In (1-=--) +~[ 4k2 ln (1- ~)- k2 +T 
h 2 h2 x 2 1-x/2 

+ 3k2 + 't' ]+ ~ [ 4k3 ln2 (1- -=-) + _.!!!!. (3k2 + T) 
h3 I -x2 2 x2 

X ln(1-~)+ 2k (3k +T)- 2k(k2+T) 
2 x 1-x/2 

- k(kZ + 't' +f)+_!: (10k2 + 6T + 1) J 
2(1-x/2)2 2 

+ z~~~) + 0 (h! ) . (18) 

In view of the unwieldiness of the expression for 
z 4(x), we present it only for the ground state 
(k = %>: 

Z•l•-" = ln3(1--_ x/2) -~ln2(1-..:_)+ ln( 1-.:_\ 
~ "-" 3x3 2x3 2 2 / 

·[ 6 1 1 1 J 13 
X xa- 2x2+4x+8(1-x/2)'.-24(1-x/2) 8- (19) 

9 17 3 9 5 
--- ---- +-+-+2-. 

16(1-x/2)2 16(1-x/2) x2 8x 6 

We have thus determined the function V (1} ) de­
fined by (10), which satisfies Eq. (3) accurate to 
terms O(h - 4) and the boundary condition at x = 1. 
We stipulate that at x = 0 it is necessary to satisfy 
a condition which, with (10) taken into account, as­
sumes the form 

Mh,m!2(hz) lx=t = 0, (20') 

thereby separating the symmetrical and antisym­
metrical functions. The conditions (20) and (20') 
are transcendental equations for kg and ku. 

Let us consider in greater detail the antisym­
metrical case. Since z(x) =J 0 when x = 1, and h 
is a large parameter, we use the asymptotic form 
of the Whittaker function[ 141 and represent (20') in 
the form 

{ 
( _) h-(m+i)/2 ( hz) he-hz/2 

..!.-,..:._ __ ...:...,_,..:._-;::-:-1:-
f(k + (m + 1)/2) 

ehzf2(hz) -k } 

+ =r..,..( -k-::----:-+-'-:(-'m-:-+--:-1-:-) /-:-=2~) 1:+ x=t = 0' 
(21) 
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where 

_ ~ ( 1 + m k ) ( 1-m _ k) (+ hz)'Fn 
~=F- LJ 2 + 2 + ' . n n n. n=O 

We note that the second series, which has only 
positive terms, does not vanish in the interval un­
der consideration. Dividing by this term and using 
the well known property of the gamma-function[ 141 

r (_!_-x )r (_!_+x) = _n_, 
12 2 cosnx 

we obtain 

cos n(k- m/2) (-)h-(mHJ/2e-hz(hz)2h~- I 

(2h)2he-h [ 3k2 + 'f 
Mu= 1----

n2! ( n2 + m) ! h 

9k4-10k3+6k~-6k't"+,;2-k + 0 (_!_)] (23) 
+ 2h2 h3 h=ko 

For the ground state (kQ = %> we get 

"k IL-11 =2he-h[t---.!-~-2+o(_!_)J. (24) 
u ,u ... -" h 4h2 4h3 h4 

Succeeding iterations of (22) lead to exponentials 
that are integral multiples and must be omitted in 
the asymptotic expansion. However, these exponen­
tials are formally determined uniquely (they were 
written out for the terms 1sag- 2pau in [ 4 ~ and 
can become important in the study of the analytic 
properties of the problem in the complex h plane. 

An analogous consideration of the g-terms leads 
to the expression kg== ko + 6kg, with <'>kg differing 
from 6ku only in sign, i.e., 

l>kg = -Ok,.[1 + 0(1/h4)]. (25) 

We were unable to prove such a symmetry in gen­
eral form. 

We call attention to the fact that the series ~- in 
the numerator of (22) could formally vanish. How­
ever, when the inequality h/4 »A. is satisfied, this 
does not take place, since the function Mko, m/2(hz) 
cannot have any zeroes in the subbarrier region. 

All the functions of k, such as z, A., E, and 
others, acquire an exponential splitting correspond­
ing to the g and u states, which can be determined 
by simple differentiation of these functions with re­
spect to k, for example, 

aE \ l>Eg,,. = ak h=k,l>kg, ,.. (26) 

We emphasize also that since A. splits into A.g and 
A.u, the quasi-radial functions will be different for 
the g and u states even when R-oo. 

4. ASYMPTOTIC FORM OF THE QUASI-RADIAL 
FUNCTIONS 

Analyzing expression (2) we arrive at the same 
standard equation (9) as for the quasi-angular func­
tions. The solutions of (2) and (4) will be sought in 
the form 

U(s) = [y'(S)]-''•M,.,m12(hy(6)) (27) 

If we choose K = n1 + (m + 1)/2, where n1 = 0, 1, 
2, ... , then the solution will decrease at infinity, 
and we shall be able to express the Whittaker func­
tion in terms of Laguerre polynomials. For the 
argument u(~) we obtain the formal expression 

( !112 _ ...!_) .!_( sP - I. _ xy'2 ) 

' 4 4' + h 62 -1 y 

+ ~2 ( (s2 4 1)2- ~;:)- 2~2 {u.s} = o. (28) 

We require that all the transition points coin­
cide, i.e., y(~) I ~==1 = 0; this leads to the quantum 
conditions for p: 

(29) 

As before, we seek y and p in the form of 
asymptotic expansions in reciprocal powers of h, 
and then we arrive at recurrence systems analo­
gous to (15) and (16) for the successive expansion 
coefficients. We write out the final results for the 
function y(O 

Y=(s -1)-~ (2k + x)ln s~i + ~ [ ln ( s:i )[ 4(k+x)2 

_ 4x(2k + x) ]+ 2(2k + x)2 + 2't _ 4k2 + x2 _ 't'J 
5-1 s+t 

+ Ya(s) + Y4(s) + O ( _!_ ). (30) 
h3 h4 \ h5 

and the eigenvalue p 

2 2 
p = 2 (I.:+ x)- "}:;_(k + x) 2 + hf.(k + x) 2 (2x- k) 

(k + x) 2 

- h3 [-(k+x)2+6(k-x2)+1] 

+ ( k + x )2 {- 33k3 + 102k2x 
2h4 

- 87kx2- 4x3 - 17k + 8x- 18h] + 0 (:5 ). (31) 
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The terms for p of order O(h - 3) and O(h - 4) were 
obtained without accurate integration, but with the 
aid of the expansion of the functions y3 (~) and y4 (~) 
in a Taylor series about ~ = 1. 

5. ASYMPTOTIC EXPANSION FOR THE ENERGY. 
WAVE FUNCTIONS 

We have thus obtained the function p(h). If we 
return to the physical parameters E = 2/p2 and 
R = ph/2, then we can obtain asymptotic expansions 
for h = h(R) and E = E(R). These are 

R{ n2 n3(n+3d) n~(3nd+6d 2+1)+ 0 (~)} 
h = ---;;, 1 + R 2R2 + R3 \ R4 ' 

(32) 

1 1 3nd n2 
E= ----+----[6d2 -n2+ 1] 

2n2 R 2R2 2R3 

n3 
- 16R4 {(17n3+19n-9m2n)+39n2d-3nd 2 

-109d3-59d+9dm2} +0(~5 ). (33) 

We have gone over here to the quantum numbers 
which are customarily used to describe the Stark 
effect in hydrogen: n = k + K is the principal quan­
tum number, D. = n1 - n2 = K - k is the electric 
number, where, as already mentioned, n1 and n2 

are the parabolic quantum numbers. 
The separation of the g and u terms is ob­

tained by means of formula (26) 

2 e-R/n-n ( 2R )2n,+m+1{ n 
Eu-E = - l+-

8 n3 n2!(n2 + m) !' n 4R 
n2 

x (3n2+8d n-M 2 - 1 + m2) + --
32R2 

X ((3n2 + 8nd- 3d2)2-4(7n3+13n2d+2lnd2-5d3) 

+ 2(-27n2+16nd + 3L\2)- 4(7n-5d) +1 

+ 2m2(3n2+8nL\- 3d2- 6L\ + 2n -1) + m4]}. 
(34) 

Of certain importance in the theory of resonant 
symmetrical charge exchange H+ + H is the sepa­
ration of the 1sag - 2pau terms, which is given by 

E - Eg =_!Re-B {1 + ____!_ -~ - ~ + 0 (~)}, 
u e 2R 8R2 48R3 ,R4,' . 

(35) 
The wave functions, as solutions of the bound­

ary value problem, will be automatically orthogo­
nal. We write them out after normalization in the 
first approximation in R -1: 

- [ n21 ]''• [ n11 ]''• 
'l'(s. 'I'J, cp) = 12 m! (n2 +~)I (n1 +.m)! 

e-hyf2(hy)<m+tJ,2Ln,m(hy) Mh,mJz(hz) eimcp 
x --- -l'-Y'_(_sz ___ 1_) ---l'-;=-z'77( 1:;==:::::::;'112;::::-) l'2:rt 

x { 1 - 2;n + o( ~ ) } , (36) 

where z, z', y, and y' are given by (18) and (30) 
with allowance for the reexpansion (32) of h in 
terms of R. The criterion for the applicability of 
the resultant formulas is the inequality 

R~8kon, (37) 

which follows from (8). Physically it means that 
we have confined ourselves to states whose energy 
is much lower than the potential in the central re­
gion between the Coulomb centers. 

6. DISCUSSION OF RESULTS 

The power law expansion (33) describes the 
Stark effect for the hydrogen atom in an inhomo­
geneous field of a point charge Z = + 1. The term 
proportional to R-2 gives the contribution of the 
linear dipole interaction and coincides with the lin­
ear Stark effect. The quadrupole moment of the 
atom leads to an interaction proportional to R-3, 

which vanishes for the ground state, and also for 
certain excited states (for example, n = 5, I n1 - n2 1 

= 2). The polarization term, which is proportional 
to R-4, describes the linear octupole interaction 
and the quadratic dipole interaction. The octupole 
interaction for states that are symmetrical with 
respect to the plane z = 0, i.e., when n1 = n2, van­
ishes, and the remaining quadratic dipole interac­
tion coincides with the quadratic Stark effect in a 
homogeneous field. [ 1 1 

The exponentially small separation of the g and 
u terms (34) agrees in first order with the expres­
sion obtained by Smirnov[ 3• 151 with the aid of the 
hypervirial relation proposed by Landau and Lif­
shitz[ 11 for the difference Eg - Eu. [ 1l The second 

Table I. Difference Eu- Eg for the ground 
state (terms 1sag- 2pau) as a function of 

the internuclear distance. 

Eu-Eg 

R Ovchinnikov 
Peek ['] and Present work 

Sukhanov [4 ] 

5 4,7129 (-2) 4,8336 (-2) 4, 7254 (-2) 
10 6, 7766 (-4) 6,8060 (-4) 6, 7878 (-4) 
15 6,8761 (-6) 6,8834 (-6) 6,8779 (-6) 
20 6,1678 (-8) 6,1703 (-8) 6,1682 (-8) 
25 5,1847 (-10) 5,1857 (-10) 5,1848 (-10) 
30 4,1850 (-12) 4,1856 (-12) 4,1852 (-12) 
35 3,2852 (-14) 3,2855 (-14) 3,2853 (-14) 
40 2,5261) (-16) 2,5270 (-16) 2,5269 (-16) 
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Table IL Energy of the states 
2sug and 3puu (ko = 1/ 2 , K = %, 
m = 0) for R = 10 atomic units 

I Batei>16] I Present 
et a!. l' work 

- ( Eg+2 Eu) 2,026(--1) 2,088 (--1) 

Eu--Eg 4,12(--3) 4,50 (--3) 

terms of the expansions of [3, 15] differ, but a com­
parison of the splitting of the eigenvalues of A. with 
the Meixner and Schafke formula [ 11 ] proves the 
correctness of our expression. Calculations for 
the ground state (35) reveal agreement with the re­
sults of all the preceding authors in that region 
where they overlap. 

Table I shows a comparison of the results for 
the splitting of the ground state, obtained numeri­
cally with an electronic computer by Peek, [ 7 ] ob­
tained from the formulas of Ovchinnikov and Su­
khanov / 4 ] and obtained from our formulas ( 35). 
Criterion (37) yields R » 4 for the ground state, 
and therefore we give values R ~ 5. We see that al­
lowance for the last term in the expansion (36) im­
proves the accuracy by approximately one order of 
magnitude. 

The excited states of H; were calculated only in 
[ 16 ], where the internuclear distances did not ex­
ceed ten atomic units. By virtue of the criterion 
(37), we can carry out the comparison only for the 
terms 2sug and 3puu Cko = 1/ 2, K = 3;2, m = 0), for 
which R » Rcr = 8 atomic units. Table II lists the 
values of - ( Eg + Eu) /2 and Eu - Eg for these 
terms at R = 10 at. units. The comparison indi­
cates good accuracy of the presented expansions. 

We propose to consider in the future, by a sim­
ilar method, the behavior of terms near the peak of 
the barrier, and also the continuous spectrum of 
the problem. 

The authors are grateful to V. S. Buldyrev and 
Yu. N. Demkov for interest in the work and useful 
discussions. 
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