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Some results are presented of a matrix-elements calculations based on the wave functions of 
the two-center problem, a knowledge of which permits one to approach the solution of many 
quantum-mechanics problems in a new way. The possibility of applying the results obtained 
to a description of processes involving three particles interacting according to the Coulomb 
law are discussed. The binding energy of the e+ e- e+ system is calculated as an example. 

THE previously obtained [2] general solution of 
the two-center problem [1] makes possible a new 
approach to the solution of many problems which 
arise in the study of processes involving three 
particles interacting in accordance with Coulomb's 
law. In particular, it becomes possible to make 
practical use in such problems of the Born-Op
penheimer method [3] and also of the "method of 
perturbed stationary states" - using the terminol
ogy of Mott and Massey [411 >. The latter is par
ticularly important, since no method having a 
generality comparable to the Born method for 
fast-particle collisions has yet been developed in 
the theory of low-energy scattering of atoms. 

The Hamiltonian of a system of three particles 
interacting in accordance with Coulomb's law is 

1i,2 fi2 1i,2 

Je =- 2Ml ~R,- 2M2 ~R,- 2M3 ~R.-

ZIZa Z2Z3 + Z1Z2 ( 1) 
I Ra- R1 I I R3- R2l I R2- R1J • 

(The Hamiltonian has been written out for an in
teraction between one negative and two positive 
particles. For convenience we shall henceforth 
refer to the negative particle with charge Z3 as 
an electron, and to the positive particles with 
charges z1 and z2 as nuclei.) 

Separating the motion of the center of mass in 
Jacobi coordinates [SJ 

1>Jn their book [4 ] they wrote: " ... This method of calcu
lating the scattering amplitudes leads to much more correct 
results than the earlier methods ... However, owing to the 
considerable difficulty in obtaining exact perturbed functions, 
this method has had limited application so far. We discuss it 
here since we hope that it may turn out to be quite fruitful in 
the future." 

ffi = M1R1 + M2R2 +MaRa 
M1+M2+Ma ' 

introducing the notation 

1 1 1 
---+---
m- M3 Mt+Mz' 

and choosing measurement units in which h = m 
= z2 = 1, we get 

1 
Je = - 2ft ~9! + fJ' 

1 Z1Z2 
H=- 2M~R+ R+Ho, 

(2) 

(3) 

1 Zt Zz 
flo= --~r----. (4) 

2 Tt Tz 

According to Born and Oppenheimer [3•41, we 
seek the solution of the Schrodinger equation 

H¢(R,r)=e¢(R,r) (5) 

in the form of an expansion 

¢(R,r) = ~Xn(R)cpn(R;r), (6) 

n 

where cp n ( R; r) are the eigenfunctions of the 
operator H0 at a fixed value of R, and n = {Nlm} 
is the total set of quantum numbers for the solu
tion of the Schrodinger equation of the two-center 
problem [1• 21 : 

Hocpn(R;r)= En(R)cpn(R;r). (7) 

Substituting the expansion (6) in the Schrodinger 
equation (5), we reduce the latter to a system of 
equations in the following form: 
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1 1 1 
- ZM ~RXm (R) + M Qmn (R) V mXn (R)+ ZM Kmn (R) 

X Xn (R) + [Em (R) + z~2 J Xm (R) = BmXm (R). 

Expanding the wave function Xn ( R) of the 
nuclear motion in terms of partial waves 

( 8) 

Xn(R) = ~XnkL.1.(R)YLA(9,tl>) (9) 
l,m 

and introducing the notation X j ( R) = XnkLA ( R), 
we can reduce the problem to the solution of the 
system of ordinary differential equations 

1 d ( 2 dx;) dxi L(L + 1) 
- R2dR R dR +2Q;i(R) dR +K;i(R)xi+-~Xi 

> (10) 
= 2M(e;- W;(R) )Xi· 

In most cases of interest, the wave function Xj 
of the nuclear motion does not depend on the azi
muthal angle 1>. Then 

Z1Z2 
Wi (R) = W n (R) =En (R) +-----,:;-, 

.Q.;j (R) = ~ ~ dr<p; (r; R) (~ V R) <Jli (r; R), 

K;j (R) = ~ dr<p; (r; R) (- ~R) <Jli (r; R), ( 11) 

where i ={N'Z'm'k'L'A'} and j ={NlmkLA}. 
With this, as can be readily seen, in the case of a 
discrete spectrum ( q < 0) the energy of the 
system E i and the wave functions Xi ( R) depend 
on six quantum numbers, three ( NZm) due to the 
electron motion and three ( kLA) due to the 
nuclear motion. For k = L =A = 0, obviously, 
we have n = i. 

We have previously described [2) an algorithm 
for the calculation of the wave functions <Pn ( R; r) 
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FIG. 1. Diagonal matrix elements Kii with respect to the 
wave functions (j) i(R; r) of the a-terms of the system 
Z, = Z 2 = 1, M, = M. Kii ~ l(l + 1)/R2 is R-> 0; Kii ~ 1/4n2 

as R -> ""· 
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FIG. 2. Diagonal matrix elements for the Z,eZ2 system 
at Z, = 1 and Z2 = 2. The indices 0 and 1 denote respec
tively the terms 1sa and 2pa. 

and the terms Wn ( R) of the two-center problem, 
and also of the matrix elements Qij ( R) and 
Kij ( R) in terms of these functions. Figure 1 
shows the diagonal matrix elements Kii for the 
a-terms of the system Z1eZ 2 with Z1 = Z 2 = 1; as 
R- 0 they behave like l (l + 1 )/R2, and as 
R- oo they tend to the limit 1/ 4n2, where n is 
the principal parabolic quantum number of the 
term. (For the a-terms of the system Z1 = Z 2 = 1 
we have n = N - Ent (Z/2 ), where Ent ( x) de
notes the integer part of x [t 1 .) 

Figures 2 and 3 give an idea of the diagonal 
and off-diagonal matrix elements, respectively of 
the system Z1eZ 2 with Z1 = 1 and Z 2 = 2: 

z,==t; Z2=2 
H=H(+J+ ){/({-~ XZH 

fl==Q(+)+}(,Q(-) 

'X=M2 -Mt 
Mz+M1 

2p6-IS6 

R 

FIG. 3. Non-diagonal matrix elements Kij of the Z,eZ2 

at z, = 1 and z2 = 2, which describe the transitions 2pa-> 1sa 
in the Z,eZ2 system. The indices of the matrix elements have 
been omitted (for example, K stands for K 10 , see Fig. 2). 
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Q (+) (-) 
ii = Q;i + xQij , 

x = (Mz- Mt)/(Mz + Mi), 
( 12) 

where M1 and M2 are the masses of the nuclei 
with charges Z1 and Z2• These matrix elements 
describe the transitions 2pO" - 1s O" and make it 
possible to describe, for example, collisions of 
a particles with hydrogen atoms. 

POSSIBLE APPLICATIONS 

Let us point out a few problems which can now 
be solved, once the mathematical difficulties 
connected with the integration of the system (10) 
are overcome. 

1. Problems concerning asymmetrical charge 
exchange of the type 

A++B-+B++A, (13) 

for the solution of which no satisfactory unified 
method has yet been proposed [sJ. These include, 
in particular, the so-called transfer problem of 
mesoatomic physics: 

( 14) 

which now can be solved numerically, at least in 
the approximation of two interacting levels Em 
and En. Processes of this type accompany all 
experiments on weak interactions of J.L- mesons 
in matter, and were thoroughly investigated ex
perimentally [7] and theoretically [B]. In the 
theoretical calculation of the transfer constants 
for the reaction (14), it was assumed that the 
greatest contribution to the cross section for the 
transfer of a J.l- meson from hydrogen to carbon 
and oxygen is made by the term intersections at 
relatively small distances between nuclei 
( R ~ 10). It follows from the earlier papers [2], 

however, that there are no such intersections and 
therefore the calculation must be repeated with 
allowance for the results of those papers. 

2. Included in the same group are problems 
involving the calculation of the cross sections of 
mesic-molecule production during collisions: 

and also the description of catalysis of nuclear 
reactions by JJ.- mesons [5]: 

(15) 

(16) 

3. So far only individual attempts [6, 9] have been 
made to describe radiative charge-exchange pro
cesses of the type 

(17) 

Within the framework of the method of per
turbed stationary states, the probability of such a 
process is determined by averaging, over the 
nuclear motion, the probabilities Aij ( R) of the 
radiative transition at a fixed value of R [10]: 

(18) 

Here a is the fine-structure constant m = 207 
w0 = 4.1 x 1016 sec-1, Wij = Ei- Ej, and ~ij ' 

= J d T rp i r rp j is the matrix element of the dipole 
transition between the states Ei and E. of the 
PJ.L-z system at a fixed value of R. J 

The results of the earlier papers [2] make it 
possible to calculate the integral ( 18), and conse
quently also to calculate the process (17). 

4. The quantity Aij (R) determines the proba
bility of the radiative transitions in mesic mole
cules. Its calculation is now possible, and of in
terest, in connection with work on the absorption 
of slow 1r- meson in hydrogen-containing sub
stances [11], and also for an explanation of the re
sults of the latest investigations [1 2] of the struc
ture of the mesic x-ray series in chemical com
pounds. 

5. The method of perturbed stationary states 
can be used also to describe collisions between 
protons or positrons with hydrogen atoms: 

P+ H-+W + e, 
e+ + H-+ H* + e+, 

e+ + H-+ e+e- + p 
etc., for the calculation of which other methods 
were used in the past. 

6. In particular, this group of problems in
cludes the calculation of the lifetime of the 1r

meson in hydrogen [taJ, knowledge of which is 
necessary in the problems of meson physics. 

(19) 

7. It was observed in our earlier paper [2] that 
highly excited states of molecular ions of the type 
Z 1eZ 2 exist. Solving numerically the equation 

- 2~ ~2 d~ (R2 ~~ )+ [w;(R)+ 2!K;;(R) ]x; = e;x;, 
(20) 

we obtain the energies q of these states. 

BINDING ENERGY OF THE e+e- e+ SYSTEM 

Let us use the obtained results to calculate the 
binding energy J of the e+e-e+ system (or of the 
equivalent e-e+e- system. Solving Eq. (20) in the 
Morse-potential approximation [14], we get 

1 
V(R) = W0 (R) +2MKoo(R) 

=A + De-2a(R-Ro>- 2De-a(R-Ro>, 
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(21) 

When M1 = M2 = M3 it follows from (3) that 
m = 2M1 /3, and in these units M = %. Using the 
results of the calculations for W0 ( R) and 
Koo ( R), we obtain also 

D = V(oo)- V(Ro) = 0.154. 
A = V ( oo) = -0,333. a = 0.624. 

Ro = 2. k = 0.12. w0 = 0.40. (22) 

Finally, J = 0.012 a.u. = 0.33 eV. A variational 
calculation gives in this case [15 ] J = 0.326 eV. 
The agreement is unexpectediy good, in view of 
the simplicity of the employed method, and this 
is one more argument in favor of the correctness 
of such a choice of the zeroth approximation when 
solving problems of this type. 

Without allowance for the adiabatic corrections 
Kooi2M, the parameters of the Morse potential [14 l 
are 

D = 0.1026. a= 0.6678. 

In this case, for M = %. we obtain w 0 = 0.35 
and J = 0.0015 a.u. = 0.041 eV, which is much 
worse (see Fig. 4). 

It is of interest to trace the dependence of the 
binding energy J of a three-particle system on 
the masses Mi of the particles making up the 
system: J = 2.79 eV for the molecular hydrogen 
. H+ [i 6l J 0 3 V · wn 2 , = • 7 4 e for the negatl ve hydro-
gen ion H- [17l, and J = 0.326 eV for the e+e-e+ 
system. We note that although formally the de-

112 5 
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FIG. 4. Effective potentials of the e+e-e+ system, with

out (Wo) and with (W0 + 2K00/3) allowance for the adiabatic cor
rections K00 for the positron motion. J -binding energy of the 
e+e-e+ system. 

scribed method is not applicable to the H- sys
tem (in this case m = 2 and M = Y4 ), it gives 
nonetheless the correct order of magnitude of 
the binding energy J = 0.98 eV. 

In conclusion I am deeply grateful to S. S. 

Gershte1n for continuous interest in the work and 
T. P. Puzynina for great help with the numerical 
computer calculations. 

1 E. Teller, Z. Physik 61, 458 (1930); W. G. 
Baber and H. R. Hasse. Proc. Cambr. Phil. Soc. 
31, 564 (1938); S. S. Gershte!n and V. D. Kriv
chenkov, JETP 40, 1491 (1961), Soviet Phys. JETP 
13, 1044 (1961). 

2 L. I. Ponomarev and T. P. Puzynina, JETP 
52, 1273 ( 1967), Soviet Phys. J ETP 25, 000 
(1967); JINR Preprint R2-3009, Duban, 1966; 
JINR Preprint R4-3012, Dubna, 1966. 

3M. Born and J. Oppenheimer. Ann. Physik 84, 
427 (1927). Z. Physik 46, 814 (1928); Z. Physik 
50, 347 (1932). 

4 N. F. Matt and H. S. W. Massey. The Theory 
of Atomic Collisions, (Russ. transl.) ONTI 1936, 
p. 132 [Oxford, 1933]; 2nd ed., IlL, 1951, p. 190. 

5S. Cohen, D. L. Judd, and R. J. Riddel. Phys. 
Rev.119, 384(1960). 

6 J. Hasted, Physics of Atomic Collisions 
(Russ. transl.), IlL, 1965. 

7 0. A. Z a!midoroga, M. M. Kulyukin, B. 
Pontecorvo, R. M. Sulyaev, A. I. Filippov, V. I. 
Tsupko-Sitnikov, and Yu. A. Shcherbakov, JETP 
44, 1852 (1963) Soviet Phys. JETP 17, 1246 (1963); 
V. P. Dzhelepov, P. F. Ermolov, Yu. A. Kush
nirenko, V.I. Moskalev, and S. S. Gershte1n, JETP 
42, 439 (1972), Soviet Phys. JETP 15, 306 (1962); 
S. G. Basiladze, P. F. Ermolov, and K. 0. 
Og~nesyan, JINR Preprint R-2153, Dubna, 1965. 

S. S. Gershte!n, JETP 43, 706 (1962), Soviet 
Phys. JETP 16, 501 (1963). 

9 N. F. Matt and H. S. W. Massey. The Theory 
of Atomic Collisions, 3rd ed. Oxford, 1965. 

10 A. F. Dunaltsev, V. I. Petrukhin, Yu. D. 
Prokoshkin, and V. I. Rykalin, JETP 42, 1680 
(1962), Soviet Phys. JETP 15, 1167 (1962); A. F. 
Dunaltsev, V. I. Petrukhin, and Yu. D. Prokoshkin, 
Nuovo Cimento 34, 521 (1964); L. I. Ponomarev 
YaF 2, 223 (1965), Soviet JNP 2, 160 (1966). , 

11 V. G. Zinov, A. D. Konin, and A. I. Mukhin, 
JINR Preprint R-2039, Dubna, 1965. 

12 V. G. Zinov, A. D. Konin, and A. I. Mukhin, 
Yai; 2, 859 (1965), Soviet JNP 2, 613 (1966). 

H. Bethe and M. Leon. Phys. Rev. 127, 636 
(1962). 



THREE BODIES !NT ERAC TING ACCORDING TO THE COULOMB LAW 1035 

14 J. Slater, Electronic Structure of Molecules 
(Russian Trans!.), IlL, 1965, p. 33. 

15 w. Kolos, C. C. J. Roothaam, and R. A. Sack. 
Revs. Modern. Phys. 32, 178 (1960). 

16 D. I. Bates, K. Ledsham, and A. L. Stuart. 

Phil. Trans. Roy. Soc. A246, 215 (1953). 
17 F. L. Pekeris. Phys. Rev.l12, 1649 (1958). 

Translated by J. G. Adashko 
189 


