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We consider the flow of current through a semiconductor with an S-like current-voltage 
characteristic brought about by the dependence of the momentum and energy relaxation 
times on the electron temperature. When the load resistance is large, a semiconductor 
with a uniform density distribution corresponding to the section of the characteristic with 
negative differential conductivity is unstable against coordinate-dependent disturbances. It is 
shown that disturbances with a wave vector perpendicular to the direction of the current in­
crease most rapidly and aperiodically. Nonuniform stationary states, in which the semicon­
ductor changes as a result of instability of the uniform state, are investigated. It is found that 
either narrow or wide layers (domains) of different conductivity, extending in the direction of 
the current, are formed in the electron plasma of the semiconductor. It is also found that dis­
tributions with a minimal number of domains are the most stable ones. Some conclusions re­
garding the shape of the current-voltage characteristic are made. 

}:N a semiconductor situated in a strong electric 
field, the current-voltage characteristic j( E) have 
a section with negative differential conductivity 
(uD < O). The characteristic is referred to as 
S-like or N-like, depending on whether the current 
density j is a multiply-valued function of the field 
E or the field is a multiply valued function of the 
current. 

Most mechanisms hitherto considered for the 
occurrence of an S-like characteristic are based on 
the growth of the momentum relaxation time Tp of 
the electrons with their temperature T, and on the 
choice of a special temperature dependence of the 
electron-energy relaxation time Te, the electron 
density remaining constant[HJ. All these can be 
called superheat mechanisms, in analogy with the 
well known superheat instability in a gas plasma[G]. 

It is known that when <Td < 0 the states with uni­
form distribution of j and E are unstable against 
small perturbations, as a result of which the semi­
conductor goes over to a state with an uneven dis­
tribution of j and E [7- 9 J. In semiconductors with an 
N-like characteristic, a field distribution that is 
inhomogeneous along the current direction is es­
tablished. The form and the velocity of motion of 
the regions (domains) of strong or weak fields have 
by now been sufficiently thoroughly investigated 
theoretically[to-t3J. If a current stabilized by a 
large load resistance, such that <Td < 0, flows 

through a semiconductor with an S-like character­
istic, then layers (filaments) of different conductiv­
ity, extending in the current direction, are produced 
in the semiconductor. Such a stratification was in­
vestigated qualitatively by Ridley[9J. 

We consider in this paper semiconductors with an 
S-like characteristic brought about by the super­
heat mechanism. A hydrodynamic approach is used 
in this case to investigate the possible states of a 
semiconductor with inhomogeneous distributions of 
j and T, and to analyze the stability of such states. 
Conclusions are drawn concerning the form of the 
observed current-voltage characteristic; in par­
ticular, it is shown that the result obtained in[9J 
is incorrect. 

1. FUNDAMENTAL EQUATIONS. INSTABILITY OF 
UNIFORM CURRENT DISTRIBUTION 

Let us consider an electron plasma in a semi­
conductor, under conditions when the time of the 
interelectron collisions is small compared with the 
time T e of scattering of the electron-gas energy by 
the lattice vibrations, i.e., when a local electron 
temperature exists. We shall assume processes 
involving the generation and recombination of the 
conduction electrons to be insignificant. In addition, 
we confine ourselves to conditions under which the 
characteristic scale Zc of the resultant current and 
temperature inhomogeneities (see below) is much 
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larger than the Debye screening length, and the 
chal'acteristic frequencies w :S T~ 1 are much 
smaller than the reciprocal Maxwellian relaxation 
time TM ~ a-1 where a is the specific electric con­
ductivity. In this case the plasma can be regarded 
as incompressible. 

The continuity equation takes the form 

1 
divv = -divj = 0, 

ne 
(1.1) 

where j is the current density, v the drift velocity, 
and n the constant electron density. 

Neglecting inertial terms (w « Tj;1) and viscos­
ity (lc » l , where ZP is the mean free path), the 
equation of motion reduces to the expression for 
the current 

( 1 ap) 
j = aE- ()' Ust + ne aT VT. (1.2) 

Here p is the pressure, a st the part of the differ­
ential thermal emf a connected with the electron 
scattering, 

(1.3) 

s is the plasma entropy per particle, and e is the 
electron charge. In an ideal nondegenerate gas with 
a power-law dependence of Tp on the electron en­
ergy, Tp oo Er, we have ast = r/e, i.e., it does not 
depend on the temperature. 

The equation expressing the conservation of the 
internal energy can be obtained in the same manner 
as for a gas plasma[14 J; 

nc.dTjdt = Rv-P- divw, (1.4) 

where P is the power transferred to the electrons 
by the lattice, ce is the specific heat of the elec­
trons per particle, and R is the "friction force," 
which in accord with (1.2) is equal to 

R = ne(j/a + Ust V T). (1.5) 

The heat-flux density is 

W = UstTj - X V T, (1.6) 

where K is the specific thermal conductivity of the 
plasma. 

If v « vT, where vT is the thermal velocity of 
the electrons, and if the collisions are weakly in­
elastic, then the kinetic coefficients and the power 
P are functions of the electron temperature only. 
In particular, the power P can be represented in the 
form 

P = ne.(T- To)/-r:.(T), (1. 7) 

where T 0 is the temperature of the semiconductor 
lattice, which is assumed to be constant. 

Substituting (1.5) and (1.6) in (1.4), we get 

dT j2 da8 t 
nee-= V(x V T)+--P- T--j V T (1.8) 

dt a dT . 

In the cases in question, the field can be regarded 
as potential 

E = -V'qJ. (1.9) 

Equations (1.1), ( 1. 2), (1. 8), and (1.9) constitute 
a complete system. The boundary conditions on the 
side surfaces of the samples are that the normal 
components of j and V'T vanish. The voltage across 
the sample and the total current are connected by 
the condition 

lx 

~E.,dx + r ~ dydzj., = fe. (1.10) 
0 

Here Ex and jx are the components of the field and 
of the current density in the direction joining the 
contacts of the sample, Zx is the length of the sam­
ple, r is the load resistance, and E the emf of the 
source. 

Let us consider the stability of the homogeneous 
current distribution. It is stable against perturba­
tions that do not depend on the coordinate if the 
load resistance is sufficiently large. Indeed, linear­
izing Eq. (1.8) and the condition (1.10) for pertur­
bations of the form (oT) 0exp(-A.t), we find that 
A. > 0 if 

(1.11) 

where S is the sample cross section area, and 
ad= dj/dEx is the differential conductivity, equal to 

1 +E.,2 (da/dT)/(dP/dT) (1.12) 
O'd=a 1-E.,2(da/dT)/(dP/dT) . 

But even under condition ( 1.11) the uniform distri­
bution is unstable against inhomogeneous perturba­
tions. Linearizing the initial equations for pertur­
bations of the type 

bT= (bT)oexp (ikr-i(w-iy)t), 

we obtain the dispersion equation 

( eT dast \ 
iw+v= ikxv 1+---1 

' ee dT } (1.13) 
1 [ (da/dT)Ei k.1..2-kx2 J x +-:r 1- dP/dT k.L2+kx2 +nee (k.L2+kx2), 

where k2 = k2 + k2 and 1 y z' 
__!_ = dP/dT = _1_ [i-T- To dln('t'e/ee) ]. 
't' nee 't'e(T) T dinT 

If the conductivity increases with temperature 
and dP/dT > 0, then ad< 0 under the condition 

1 _ (da/dT)E.,Z (l.l4) 
dP/dT < O, 
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FIG. 1. S-like current-voltage 
characteristic. Solid line - charac­
teristic for homogeneous current 
distribution, dashed - when broad 
domains occur. On the ordinate 
axis, reading downward: iJ, ic2• 

j c 1' j 1• 

E 

which corresponds to an S-like characteristic. The 
latter is seen from the fact that crd becomes infinite 
at Ex= Ec 1, when the denominator of (1.12) vanishes 
(see Fig. 1). If crd < 0, then the homogeneous state 
is unstable (y < 0) against perturbations having a 
sufficiently large ratio kl/k~. We see that the 
maximum increment is possessed by perturbations 
with ki » ki (the instability is purely aperiodic 
when kx = 0), which lead to stratification of the 
sample in a direction perpendicular to the station­
ary current. We can propose a simple qualitative 
explanation for this effect. 

A local increase o T in the electron temperature 
changes the power received by the electrons by an 
amount 

( da dP) -Ex2-- 8T 
dT dT 

(1.15) 

and the perturbation continues to grow if this change 
is positive (see (1.14)). If the perturbation oT de­
pends on the coordinate x, it causes a decrease 
o Ex = - ikx<P in the field. In this case it is neces­
sary to add to (1.15) a term connected with the field 
perturbation and equal to 

da kl· 
-2-E 2 8T 

dT x k.1?' + kx2 • 
( 1.15a) 

When dcr/dT > 0 this term prevents the growth of 
the perturbation. 

As expected, perturbations with sufficiently 
short wavelengths are attenuated as a result of the 
thermal conductivity. Consequently, in a sufficiently 
thin sample, the homogeneous stationary state is 
stable[15 J. From (1.13) we get an expression for 
the corresponding critical linear dimension 

lc = n(Ex2 da/d;- dP/dT r 
= n ( X'te.) 1

/'( T- T0 dln(cr,;./ce) _ 1)-1
/'. 

nee T dln T 

( 1.16) 

In order of magnitude we have 

(1.17) 

where vT = (T /m) 1/2. 
Thus, for n-InSb at helium temperatures we have 

lc ~ 10-2-10-3 em. The data for this material were 
taken from [tsJ, in which the observed S-like char­
acteristic was apparently connected with the super­
heat mechanism considered above. 

In the case when the conductivity decreases with 
temperature, crd < 0 if 

dP da 
dT + dTEx2 < 0, 

corresponding to an N-like characteristic. It fol­
lows from (1.13) that the greatest increment IYI is 
possessed by perturbations with k~ » k}_. The 
growing fluctuations are uniform over the cross 
section of the sample. 

2. STATIONARY STATES 

Let us consider the stationary states, with a 
current distribution that is not uniform over the 
cross section, into which the sample can go over 
as a result of the instability. We shall assume that 
all quantities are independent of the coordinate x, 
and that the transverse component of the current j 1 
is equal to zero. Then Eq. (1.8) can be represented 
in the form 

V ..1.28 + dU/d8 = 0, (2.1) 

where 
T 

8 = ~ dT'x(T'), (2.2) 

e 
U(8) = J d8'[cr(8')Ex2- P(8')]. (2.3) 

We consider for simplicity a case when the tem­
perature depends only on one coordinate, and con­
sequently® = ®(y). Such an inhomogeneity will be 
called layered. The equation for ®(y), 

d28jdy2 + dU /dE>= 0, (2.4) 

has the same form as the equation of motion of a 
particle in a field with potential U(®). Figure 2 
shows a plot of U(®) for several values of the field 
Ex· The condition under which the function U(®) 
has an extremum, 

(2.5) 

has three roots in the field range Ec2 < Ex < Ec1 

(see Fig. 1); we shall denote them, in increasing 

FIG. 2. Potential U(8) for 
different values of the field 
Ex: a- E 0 <Ex < Ec 1, b -
Ex= Eo, c- Ec2 <Ex< Eo. 

u 
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FIG. 3. Phase trajectories 
of Eq. (2.6): a - E 0 <Ex < 
Ec I• b - Ex= Eo. 

order, by®~, eg, and eg. They correspond to three 
possible values of the temperature and consequently 
to three values of the current density for a given 
Ex and a uniform distribution (Fig. 1) : 

j<k>=cr(Tk0 )Ex (k=1,2,3). 

The "energy integral" of Eq. (2.4) is 

1/ 2 (d8/dy)2 = U(8t)- U(8), (2.6) 

where ®1 is the extremal value of the distribution 
® (y). To analyze the possible solutions of (2.4), it 
is convenient to draw of the "particle" trajectory 
(2.6) in the (®, ®' = d®/dy) plane (Fig. 3). For the 
potential U(®) represented by curve a of Fig. 2 
[for which U(®~ > U(®~)], the phase trajectories 
are shown in Fig. 3a. The trajectory passing 
through the singular point®~ (saddle) corresponds 
to a single narrow hot domain (layer of increased 
conductivity) with maximum "temperature" ® 1 

< ®~ satisfying the condition U(® 1) = U(®~). The 
trajectories that are close to the one just consid­
ered correspond to a series of such domains, and 
those close to the point ®~ correspond to weak os­
cillations of the temperature about Tg. 

There exists a unique field Ex = E0 (Fig. 1) for 
which U(®~) = U(®~) (Fig. 2, curve b). Each of the 
trajectories 1 and 2 (Fig. 3b) passing through ®~ 
and®~ represents two phases with temperatures 
T~ and T~ and a smooth transition between them, so 
that the closed trajectory 1-2 corresponds to a 
broad domain (of width much greater than the width 
of the transition layer, and with a flat top). 

The potential U(®) for Ec2 < Ex < E0 is shown in 
Fig. 2( c). The phase curves are similar to those of 
Fig. 3a. The difference lies in the fact that the 
phase curve corresponding to the single domain 
goes in this case through the singular point®~, 
and the domain is a narrow cold layer. 

If the sample thickness Zy is smaller than the 
half-period of the temperature oscillations near 
Tg, which is equal to Zc = 7T(U"(egn-112, then there 
is no inhomogeneous stationary state under the 
boundary conditions indicated above. We note that 

Zc coincides with the crystal wavelength of the per­
turbations which are attenuated in the inhomogene­
ous state with T = T~ (see (1.13)). When the field 
Ex approaches the critical field Ec1(Ed (Fig. 1), 
the "temperatures" ®~ and eg (®~ and®~ come 
closer together, so that U"(®g) - 0 and the critical 
thickness increases. 

The width of the narrow domain and the width of 
the boundary of the broad domain are, naturally, of 
the order of Zc, i.e.,~ vT(TeTp) 112 • 

Equation (2.1) for the stationary distribution 
®(y, z) is the Euler equation for the functional 

i.e., the stationary distribution ®(y, z) corresponds 
to the extremum of the "action" S. 

R.idley[s] states that the stationary state corre­
sponds to a minimum of entropy production in the 
sample. It can be verified quite easily that the 
latter quantity differs from S (2. 7) in the systems 
under consideration, so that R.idley's statement is 
incorrect. In[s] he obtained Ex= Ec2 (in the in­
homogeneous stationary state (Fig. 1). However, at 
this value of the field the points eg and ®~ coalesce, 
the potential U(®) has only two equilibrium points, 
and there exists no solution corresponding to 
domains. 

3. STABILITY OF INHOMOGENEOUS STATIONARY 
STATES 

Let us linearize Eqs. (1.1), (1.2), and (1.8) for 
perturbations of the type 

6T = <'IT(y)exp [i(kxX + k,z)- A.t]. (3.1) 

For convenience, we represent expression (1.2) for 
j in the form 

j = -crV'IJl, (3.2) 

where 

and we put o® = KoT. Then we obtain foro® and 
o¢ the system of equations 

~ nee ( eT dast ) nee J 
[Ho+kx2 +kz2 +ikxv- 1+--- -A.- 118 

X Ce dT · X 

+ 2ikxaEx6'¢ = 0, (3.4) 

~ da 
H16'¢ + ikxEx de68 = 0, (3.5) 

where 

~ tP f!J.U I 
H o = - dy2 - df¥- e=e<yl (3.6) 
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Hi=- :ja d:)+(kx2+kz2)a. (3.7) 

An investigation of the eigenvalues A. of this sys­
tem is particularly simple in the case when the 
perturbation does not depend on x, i.e., kx = 0. 
Then A. is determined from the solution of the fol­
lowing equation (here ki "'0, see below): 

(Ho + kz2 - nce''Aix)68 = 0. (3.8) 

The operator H0 coincides with the energy opera­
tor of quantum particle in a field with a potential 
- U"(®). Figure 4 shows this potential schematic­
ally for the case of the boundary of a bro,:td domain. 

Let us investigate the eigenvalues of H0 for 
those stationary distributions of® (y) whose deriva­
tive d® I dy satisfies practically the same conditions 
on the boundaries (-l /2 and lyl2) as the function 
®(y) itself (boundary ~f two broad phases, domains 
located away from the boundary at distances much 
larger than lc, distributions that oscillate many 
times within the length ly, etc.). In this case the 
eigenfunction of H0 corresponding to the zero eigen­
value is d® I dy. To verify this it is sufficient to 
differentiate Eq. (2.4). If the function d®/dy does 
not vanish inside the sample, then it is the ground 
state eigenfunction of H0, and then the smallest 
eigenvalue of :H0 is zero1>, and "Amin is a positive 
quantity when ki "' 0. 

If d® ldy vanishes inside the sample (oscillating 
temperature distribution or domains inside the 
sample) then the zero eigenvalue of H0 correspond­
ing to the function d®/dy is not the minimal value. 
Thus, for oscillating distributions, H0 has an entire 
spectrum of negative eigenvalues A. < 0 for small 
k 2 and such distributions are unstable. For broad Z' A 

domains, however, the negative eigenvalue of H0 is 
exponentially small and when kz "' 0 we have for 
them A. > 0. 

Indeed, let us consider a broad domain which is 
not adjacent to the lateral surface of the sample. 
The potential-U"(®) has in this case the form of 
two potential wells of width ~ lc, separated by a 
barrier whose dimension is equal to the width of the 
domain. The zero eigenvalue of H0 corresponds to 
an antisymmetrical eigenfunction d® I dy (such a 
perturbation represents a small shift of the domain 
along the y axis). It is known [17 J that the lower 
level (to which the symmetrical function corre­
sponds) differs from the former by an exponentially 
small quantity, which in our case makes a negative 
contribution of the order of T~1exp(-ll U"(®~) 112) 

l)Such a method of investigating stability was used earlier 
in ["]. 

FIG. 4. Potential -U"[8(y)] in 
the case of a broad-domain bound­
ary. 

-u" 

to A. (Z is the width of the "hot" domain, and the 
characteristic length is IU"(®~) 1-112 - Zc). Since 
the minimal value ikzl "'0 is of the order of z;1, 

the positive addition to A., which is proportional to 
k 2 , exceeds the exponential one when l ~ lcln(lzllc), 
thus ensuring the instability of such a domain. Per­
turbations with kz = 0 change the total resistance 
of the sample and consequently the voltage across 
it. Then it is necessary to add to the left side of 
(3.8) the term 

ly/2 lyf2 

- 2aEx6Ex = 2crEx2 [ ~ + ~ dy a (y) r1 ~ dy :; 68. 
l,r -l /2 -! /2 'CI 

y y (3.9) 

Let us consider the stability of the boundary be­
tween "phases," and also the stability of the broad 
domain. In this case, as will be shown, the correc­
tion to A. is small. It follows from (3.8), with allow­
ance for (3.9), that at small values of lA. I outside 
the transition layer, o® does not depend on the co­
ordinates and its sign is the opposite of the sign of 
the last integral in (3.9). Consequently, the signs 
of o® inside and outside the transition layer are 
opposite. Using the asymptotic form of (3.8) with 
allowance for (3.9), let us express the values of o® 
on both sides of the transition layer in terms of 
of 

lc 

\' da 
J = .l dy d®6®, 

-lc 

where the integration is carried out only over the 
transition layer. Substituting these values in ( 3. 9) 
and the resultant expression in ( 3. 8), we find that it 
constitutes a small perturbation, proportional to 
the quantity 

ly/2 

!(lxllzr+ ~dyad ri 
' -l./2 

the correction to A. for large values of r is positive, 
of the order of T- 1(Z Ill, where l is the width of the e c 
phase that determines the conductivity of the sam-
ple (Z can be of the order of Zy). Consequently, the 
broad domain is stable against perturbations with 
kz = 0. 

Perturbations with kx >" 0, corresponding to 
small lA. I , are surface waves whose amplitude at 
small lkxl decreases far from the phase boundary 
like exp(-yjyj), where y is equal to (udfu) 112 ikxl 
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when kz = 0. Perturbati<llns with kx ;ot 0 will not be 
considered in detail separately. 

We have considered above only layered distribu­
tions of the temperature and of the current. Obvi­
ously, the condition Ex = E0 determines the exis­
tence of broad domains, not necessarily plane ones, 
provided the radius of curvature of the domain 
boundary is much larger than the width of the tran­
sition layer. An analysis of Eq. (2.1) for a distri­
bution with cylindrical symmetry shows that, just 
as in the case of a layered distribution, narrow hot 
domains exist when Ex> E0, and narrow cold do­
mains when Ex < E0• 

As ve.rified above, a narrow plane domain inside 
a sample is unstable against perturbations that do 
not change the total resistance of the sample (they 
have the form of jumpers). Let us show that cylin­
drical domains are stable against such perturba­
tions. In the case of a cylindrically-symmetrical 
stationary distribution, the equation for a perturba­
tion in the form o®(p)exp(im cp- A.t) is as follows 
for m ;ot 0 (these are precisely the perturbations 
which do not change the total resistance of the sam­
ple): 

( fl(m)- nee f...l68(p) = 0, 
' :X 

(3.10) 

where 

1 d ( d) U" m2 fl(m)= -~ - p- - {8)+-. 
. pdp dp p2 (3.11) 

The derivative of the stationary distribution d® I d p, 
as can be readily verified, is the eigenfunction of 
:HW corresponding to a zero eigenvalue. Therefore, 
if the temperature varies monotonically from the 
axis towards the boundary of the sample (d®/dp 
has no nodes), then the smallest value of A. at m = 1 
is equal to zero. In the opposite case the distribu­
tion is unstable (A. < O). 

4. CONCLUSIONS 

We have established above that if the total cur­
rent in the sample is specified and its density f 
averaged over the cross section exceeds jet (Fig. 
1), then the resultant instability causes the sample 
to break up into domains that have different conduc­
tivities and are parallel to the current. The form 
of the domain is described by Eq. (2.1). The most 
stable distributions are those with the smallest 
number of domains. 

The observed current-voltage characteristic, 
i.e., the j(Ex) dependence, does not coincide with 
the j(Ex) characteristic for the uniform distribution 
shown in Fig. 1. Let us see what determines the 
field Ex (which does not depend on the coordinates) 

after the sample has become stratified into do­
mains. If the j(Ex) dependence is such that the cur­
rent densities jt and h in the cold and hot stable 
"phases" are of the same order of magnitude, then 
the condition that the average density be equal to a 
specified value off (larger than jCf) can be satis­
fied only in the presence of a broad domain 
(domains). Indeed, when Ex < Ect and f > jet• the 
increase of the current due to the appearance of a 
hot but narrow (Z 0 » Zy) domain cannot offset the 
decrease of the current in the cold phase. In this 
case, when T > jet• the field drops to E0-the field 
corresponding to the broad domains (see Sec. 2). 
With increasing f, the voltage across the sample 
remains unchanged (the width of the domain increa­
ses), and the observed characteristic has the form 
shown dashed in Fig. 1. We note that when Tap­
proaches h· the characteristic should deviate from 
a vertical line, since the width of the cold phase is 
decreased thereby to a value l :S Z0. The vertical 
section of the current-voltage characteristic in a 
semiconductor (n-InSb) in which negative ad is 
produced by the superheat mechanism was appar­
ently observed in[tG]. 

If h and h differ greatly, then in some interval 
off > jet the condition for the total current can be 
satisfied only in the presence of narrow domains. 
With increasing f, the voltage in the sample should 
change, i.e., the observed characteristic is not 
vertical. 

When the current T decreases from values close 
to h· stratification into domains occurs when 
T = j02, so that hysteresis takes place. We see that 
at a given value of the total current in the sample 
(for example, in the interval of r from jc2 to h· 
Fig. 1) the system can be in two stationary states­
homogeneous or inhomogeneous-with different 
values of Ex. Both states are stable against small 
perturbations. The sample can go over from one 
such state into another under the influence of the 
large perturbations required for the purpose, pro­
vided such perturbations exist in the system. In 
principle, the sample can be stratified into broad 
domains when T <jet· 

The authors are grateful to A. A. Vedenov and 
A. Ya. Shul'man for a discussion of the work. 
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