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The stability of solutions of the simple -wave type for a nonlinear diffusion equation is investigated by 
the quasiclassical approximation method. 

A number of problems, such as the propagation of 
waves in semiconductors with negative differential re­
sistance, or the propagation of a flame front or a 
thermal-ionization front, make it necessary to find and 
investigate solutions of the type of a simple steady­
state wave for a nonlinear diffusion equation of the type 

( 
[) [)2 ) 

--D--D/1.1. c = Q(c). at [)x2 
(1) 

Here c(t, x, r 1) is the field of concentrations at the 
point (x, r v, D is the diffusion coefficient, and Q(c) is 
the nonlinear source due to the presence in the system 
of slow creation and annihilation processes. The 
Laplace operator is represented in the form of a sum 
of the longitudinal and transverse operators. We shall 
consider below simple steady-state waves with plane 
fronts. 

For the case of a constant-sign source that vanishes 
at two points corresponding to the state of equilibrium 
of the system, solutions of the type of a simple steady­
state wave connected with the asymptotic transition sys­
tem from one equilibrium state to the other were first 
investigated by Kolmogorov, Petrovski'i, and 
Piskunov [1J. Subsequently, simple waves were investi­
gated for linear sources of this kind in connection with 
different models of flame-front propagation [2' 3J. Re­
cently simple steady -state waves were considered for 
the case of an alternating-sign source Q(c) in connec­
tion with a study of slow waves in distributed systems 
with N -shaped current-voltage characteristic. [4 , sJ 

We investigate in this paper the stability of simple 
steady-state waves connected with the nonlinear diffu­
sion equation ( 1). 

We use the method of quasiclassical approximation 
for the analysis of the stability of simple steady-state 
waves. We determine the region of decrements or 
increments for the perturbed problem, for which in the 
quasiclassical approximation the eigenfunctions are 
bounded in the entire space. For the instability region 
we determine the conditions under which the instability 
is of the drift type. The main difference between the 
simple steady-state waves connected with the nonlinear 
equation of diffusion and other types of simple waves, 
such as those considered by Berezin and Karpman [6J, is 
that in the present case both the unperturbed and per­
turbed problems are not self-conjugate and do not admit 
the existence of first integrals of the conservation-law 
type. 

Let the nonlinear source be a positive and convex 
function of the concentrat.i.ou vanishing at c = Q and 

c = 1. Obviously, the derivative of the nonlinear source 
with respect to the concentration is positive at c = 0 
and negative at c = 1. Putting 

c(t,x,r.1.) =.c(TJ) == o(x + ut) 

where u is the constant rate of propagation of the sim­
ple steady-state wave, and using (1), we find that the 
distribution of the concentrations for the wave under 
consideration is determined by a solution of the equation 

( -D_rP +u~)c=Q(c) 
dr]2 dr] 

(2) 

under the following boundary conditions: 

lim c === 1, lim c = 0. (3) 
fl-+00 1')-+-00 

This boundary-value problem determines the simple 
steady-state wave connected with the asymptotic transi­
tion of the system from one state of equilibrium to 
another. It is known [1J that in phase plane (dc/d1], c) 
there corresponds to this wave a trajectory that 
emerges from a saddle-like singular point and goes to 
a node-type singular point. It is shown in the cited pa­
per that solutions of the type of a simple steady-state 
wave exists if the proper parameter of the problem, the 
wave propagation velocity, is given by 

[ dQ I J'" u;;;;:um;n=2 D- . 
, de c=O 

This raises the question of the stability of simple 
steady-state waves against small perturbations. Let us 
consider the perturbed state of the system 

c(t,x, r .1.) = c(x + ut) + 'l'(t,x, r J.) == c(TJ) + '¥(1], t, r J.). (4) 

Assuming the perturbation to be small, we obtain a 
linear equation which determines the development of the 
small perturbations 

( 
[) \ [)2 [) ( 

at+ 2) '¥ = 0, 2 == -D [)TJ 2 + ua:;j+ U(TJ)- D/1.1.. 5) 

We have introduced here the notation U(1J) = dQ/ de lc('IJ)· 
The obtained equation admits of a solution of the type 

and leads to the following eigenvalue problem for the 
parameter y: 

(6) 

rP d 
(L-y)'l'v = 0, L == -D-+ u-+ U(1J)+DkJ.2• (7) 

d1)2 dr] 

The boundary conditions should correspond to boun­
dedness of the eigenfunction at -co < 17 < + 00• Let us 
ascertain the form of the function U(1J). Simple graph-

382 



STABILITY OF SIMPLE STATIONARY WAVES 383 

ical constructions show that in the (U, 11) plane the 
curve has the form of a "potential wall" with horizontal 
asymptotes 

dQ I U(-oo)= -- <0, 
de 'c=O 

u < + 00 > = - dQ 1 > o. 
de c~l 

located on opposite sides of the 11 axis. 
Let us assume that U(11) is a slowly varying func­

tion; then in the quasi classical approximation the prin­
cipal term of the asymptotic expansion of the solutions 
of (7) takes the form [7] 

qr,±(TJ) ~ exp [) d1Jk±(TJ) ]/ [ ~ + U(1J)+Dk.L2 -y r. (8) 

The local wave numbers are equal to 

u [u2/4D+U(TJ)+Dk.L'-vJ'" 
k±(TJ) = W± D . (9) 

The qualitative behavior of the quasi classical solu­
tions is determined in many respects by the number and 
arrangement of the turning points, at which the values 
of the local wave numbers coincide, k..(11) = k-(11), and 
the points at which the real parts of the local wave num­
bers reverse signs. In such a case, the equation deter­
mining the turning point is of the form 

(10) 

and the points at which the wave number k-(11) reverses 
sign are determined by the solutions of the equation 

(11) 

Let us assume for the time being that k1 = 0 (the re­
sults of the analysis of the stability at k1 ¢0 will be 
given later). We consider first the region of increments 
y < 0. It is easy to verify that u2/4D + U(11) > 0 in the 
region of existence of simple steady-state waves and 
there are no turning points. The local wave numbers 
are real, k..( 11) is positive throughout, and k-( 11) is 
negative throughout if y > U(-oo). It is obvious that 
when y > U{-oo) there exist no solutions that are boun­
ded in all of space. However, in the region 0 > y 
> U(-oo) the equation (11) has a solution and there ex­
ists a point at which the local wave number k-(11) rever­
ses sign. Since k-(+oo) < 0 and k_{-oo) > 0, the solution 
>It}-( 11) corresponding to the given local wave number is 
bounded in all of space. Thus, 'lty is the quasiclassical 
approximation of the eigenfunction of the boundary prob­
lem under consideration, and corresponds to a continu­
ous strip of increments 

0 > V > -dQ / dclc~o. 

Consequently, simple steady-state waves propagating 
with velocity u > Umin are unstable if k.L = 0. 

Let us consider the region of decrements y > 0. It 
is clear that when u2/ 4D + U( + oo) there are no bounded 
solutions. There are likewise no bounded solutions in 
the region U(+ oo) < y < u2/ 4D + U(+ oo), where a turning 
point exists but k-( 11) does not reverse sign on the right 
of the turning point and is a positive quantity. However, 
in the region of decrements 0 < y < -dQ/dclc=1 there 
exists both a turning point and a point situated to the 
right of the turning point, at which the local wave num­
ber k-(11) reverses sign, and k-(+ "") < 0. Since the real 
part of the local wave number is positive, on the left of 

the turning point, we arrive at the conclusion that for 
the given strip of decrements there exists solutions that 
are bounded in all of space. The quasiclassical eigen­
functions should be further determined in the usual 
manner in the immediate vicinity of the turning point. 

We note, finally, that the eigenfunction of the neutral 
solution (y = 0) is in our problem the distribution func­
tion of the diffusion flux in the simple wave. The latter 
circumstance is the consequence of the coincidence of 
the operator of the perturbed problem and the operator 
acting on de/ d11. Indeed, differentiating the equation of 
the unperturbed problem (2) we can verify the correct­
ness of this statemene >. 

When k.L ¢0, the region of instability becomes nar­
rower, the largest increment decreases to a value 
dQ/ de lc=O - Dk~, and the instability disappears at 
sufficiently large values of the transverse wave num­
ber. Thus, perturbations that are localized in a plane 
orthogonal to the direction of propagation of the simple 
wave lead to a partial stabilization of the instability in 
question. 

Let us clarify the character of the instability. It is 
obvious that the latter is of the drift type if 

liD") dy e(y)'I',(TJ)e->t = 0 
t-;..ooi'<O 

(12) 

at x = const, otherwise the instability will be absolute. 
Here c( y) is the amplitude of the elementary solution, 
and the integration is carried out over all the admissi­
ble values of the increments. Since the local wave num­
ber k_{ 11) ._.. k-( + "") as 11 ._.. + 00, we have asymptotically 
jd11k-(11) ~ k_{ + oo) 11 and the behavior of the integral (12) 
is determined essentially by the sign of the difference 
k-(+ oo)u- y. Consequently, the instability is of the drift 
type if the following inequality is satisfied for all the 
permissible values of the increments: 

(13) 

For the case k 1 = 0, the last inequality leads to the 
following requirement, which must be satisfied by the 
propagation velocity of a simple steady-state wave: 

1 [ dQ I I dQ I l'" u>-umin -- - . 
2 de I c~o de c~l-

(14) 

It is obvious that for a symmetrical nonlinear source 
the instability is always of the drift type. It should be 
noted that a complete investigation of the type of insta­
bility should be based on an analysis of the asymptotic 
behavior of the overall solution of the unperturbed prob­
lem as an initial-value problem. 

We have investigated above the case of a source of 
constant sign. In many cases it is necessary to inves­
tigate the stability of simple steady-state waves, for 
the diffusion equation with a source of alternating sign. 
Let the function -Q(c) correspond to anN-shape curve, 
which vanishes at three points c = 0, c = cs, and c = 1, 
and reverses sign on going through the unstable equili­
brium position Cs < 1. The equation determining the 
distribution of the concentrations in the simple steady­
state wave c(x- ut) = c(~) is of the form 

l)The author is grateful to A. F. Volkov for a communication con­
cerning the aforementioned property of the neutral solution. 
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- (n ~ + u_r:_) c = Q(c) as• as. 
and should be solved under the following boundary con­
ditions: 

lim c = 0, lim c = 1, lim (dc/ds) = 0. 
;-+oo ~-J>--oo ~-+±co 

In the phase plane (dc/d~, c) a simple wave of this type 
corresponds to a trajectory representing a common 
separatrix of two singular saddle points corresponding 
to the initial and final states of equilibrium of the sys­
tem. In our case the proper parameter of the unper­
turbed problem (the propagation velocity of the simple 
steady-state wave) can assume only one value, for which, 
as a rule, it is impossible to obtain a closed analytic 
expression. Obviously, the expressions given above for 
the principal term of the asymptotic expansion, the local 
wave numbers, the turning points, and the point at which 
one of the local wave numbers reverses sign, remain 
valid also in the given case (with the obvious substitu­
tions TJ- ~and u --u). The statement concerning the 
property of the neutral solution likewise remains in 
force. It is easy to establish graphically that the curve 
U(~) corresponds to a curve of the potential-well type, 
the bottom of which is dropped below the ~ axis by an 
amount min U(~) = -maxc (dQ/dc), and both horizontal 
asymptotes (at ~-±co) are located above the ~axis. 

Let k1 = 0. We can then show that the bottom of the 
potential well u2/4D + U(~), which determines the turn­
ing points, is located below the ~ axis, and consequently 
the solution of the unperturbed problem should be such 
that 

u• dQ 
t.D -max Tc < 0. 

Let us assume the opposite; then for all the values 
of y, such that y < u2/4D +min U(~), there are no turn­
ing points. Here, however, one or two points at which 
the local wave number k+(~) reverses sign, can exist. 
If the sign of the local wave number reverses twice, 
then no bounded solutions can exist. If the local wave 
number reverses sign once, then a solution correspond­
ing to the given local wave number is bounded. However, 
a situation in which the sign reversal occurs once is 
possible only for the region bounded from above and 
below by the quantities U( +co) and U(- co). Since both 
horizontal asymptotes are located above the ~ axis, it 
follows that for values of y smaller than the lower of the 
two asymptotes there exist again two points at which 

k+(~) reverses sign, and consequently there are no solu­
tions that are bounded everywhere. 

The absence of eigenfunctions for the indicated reg­
ion of values of the parameter y, in which the value 
y = 0 is located, contradicts the fact that when y = 0 the 
problem has a neutral solution, which is bounded every­
where and has an eigenfunction that coincides with the 
distribution of the diffusion flux in the simple wave. 
The contradiction is eliminated if it is assumed that the 
bottom of the potential well u2/4D + U(~) is located below 
the ~ axis. Thus, the propagation velocity of the simple 
steady-state wave is bounded from above by the quantity 
umax = 2(D · maxc(dQ/dc))l/ 2, and if the instability does 
exist, then the largest increment does not exceed 
max(dQ/dc)- u2/4D. 

In conclusion we note that in spite of the fact that we 
used the quasiclassical approximation method for the 
investigation of the stability of simple waves, a consid­
erable part of the conclusions remains in force also for 
those cases when dQ/dclc(TJ) is not everywhere a slowly 
varying function. The latter remark is due to the fact 
that in most cases all that is essential is the asymptotic 
behavior of the solutions at TJ- ±co. 
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