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The field of surface waves excited by an arbitrarily moving charged particle on the interface between 
vacuum and an absorbing nonmagnetic medium is calculated. Excitation of surface waves by a particle 
moving uniformly and rectilinearly at an angle with respect to the interface is considered. The par­
ticular cases of normal incidence and of motion of the charge parallel to the interface are also con­
sidered. For glancing incidence the spectral-energy density of the surface-wave excitation exceeds 
the transition-radiation intensity by several orders of magnitude. The estimates presented in the 
paper show that the experimentally-observed intense radiation produced by electrons impinging on a 
silver target at grazing angles can be attributed to scattering of the surface wave by irregularities of 
the surface. 

As is well known l 1J, a surface H-wave can propagate 
along the interface of two nonmagnetic media with posi­
tive and negative dielectric constants respectively; this 
wave attenuates exponentially on penetrating deeper in 
either medium. Such a wave can be excited quite ef­
fectively by a moving charged particle, as is clearly 
manifest in experiments on the study of discrete energy 
losses C2J. 

The question of excitation of surface waves by a 
moving charge was considered by many authors l4 - 9 J, 
starting with Ritchie C3J. In all these investigations, 
dissipation was not taken into account, and the particle 
motion was assumed linear and uniform. In the present 
article we find the field of surface waves excited by an 
arbitrarily moving charged particle on the interface 
between vacuum and a nonmagnetic absorbing medium. 
We analyze in detail the case of uniform and linear mo­
tion at an arbitrary angle to the boundary. 

1. INITIAL FORMULAS 

We use as our starting point the results of C10J, 
where the field of a arbitrarily moving charged particle 
was determined in the presence of a boundary between 
media. To find the field of the surface wave in the case 
of nonmagnetic media, which we shall consider here, it 
is necessary to use formulas (2.13) and (2.8) ofl 1oJ, 
which describe the reflected and refracted field polar­
ized in the plane of propagation. The electric vector of 
the corresponding electromagnetic waves lies in the 
plane passing through the wave vector and the normal 
to the interface, and the magnetic-field vector is 
parallel to the interface. 

Integrating (2.13) and (2.8) of C1aJ along the trajectory 
and putting in these formulas Ej = 1, Es = E, and J.J.j 
= J.J.s = 1, we write the Hertz vectors of the field of an 
arbitrarily moving charge particle in the form 

i. __ ~r r r ei"'t(ek;,-k.,) [ x•+ k k k·] 
II.,, - 4 2 j J j R 2k. ( k. + k ) fl, ( flx x + ~y y) '' :Jl, l1) pX JZ B JZ sz 

x•exp [ilcx (x- Xt) + iky (y- Yd + ik;, (z + z() l dkx dky tit,, 

Z > 0, Zt > 0, ( 1.1) 

IIJ.< = - e: ~ ~ ~ ---' 'e'iwt I • [fl,x'- ( flxkx + flyky) k,] 
2n w ~x (ek" -,-1 •. ") 

X.exp [ikx (X- X(}+ iky (y - yb) + ik;, Z - ik, zt) dkx dky d1;,, Z > 0, Zt < 0, 
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where 

From the requirement that the field be finite at infinity, 
it follows that the imaginary parts of K, kjz, and ksz 
are either positive or zero. 

Just as in C10J, we use here a rectangular system of 
coordinates with z axis directed into the medium j, 
which in our case is vacuum, and an xy plane coincid­
ing·with the interface. We omit the symbol 11, which 
indicates that the corresponding waves are polarized 
in the plane of propagation, and designate the Hertz 
vectors with superior indices j, which denote that the 
given quantities pertain to vacuum ( z > 0 ). Inferior 
indices j or s denote that the field is determined by 
the particle moving respectively in vacuum ( zc > 0) or 
in the medium (zc > 0). 

Reversing the signs of the vectors (2.13) and (2.8) 
of [laJ, interchanging the indices j and s, reversing the 
signs in front of the components kjz and ksz, putting 
then Ej = 1, Es = E, J.J.j = J.J.s = 1, and integrating along 
the trajectory, we obtain the reflected and refracted 
field in the medium ( s < 0 ) ; 

In formulas (1.1) and (1.2) x, y, and z are the co­
ordinates of the point of observation of the field, and 
xc, YC, and zc are the coordinate of the particle at the 
instant of time t. 

The Fourier components of the electric and mag­
netic fields are determined by the vectors (1.1) and 
(1.2) by means of the formulas 

• . {J)2 • 

E,' = grad div II,/+ ;:2 II,', 

1 (J)2 

E.,• = ~grad div II.,' + 7i" II.,• (1.3) 
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These are the initial results necessary to consider 
surface waves excited by charge particle on the inter­
face between vacuum and the medium. 

2. FIELD OF SURFACE WAVES IN THE CASE OF 
ARBITRARY MOTION 

To find the field of the surface waves it is necessary 
to integrate with respect to kx and ky in formulas 
(1.1) and (1.2). A preliminary changeover to new vari­
ables cp and K, which are connected with kx and ky by 
means of the formulas kx = K cos cp and ky = K sin cp, 
and integration with respect to cp lead to the appear­
ance of Bessel functions. Replacing the latter by the 
half-sum of Hankel functions, we can extend the inte­
gration with respect to K from - oo to + 00 and close 
the contour of integration in the complex plane by a 
semicircle of infinite radius. The integrands have a 
pole at K = ( w/ c) v E/( 1 + E) and branch points at 
K = w/ c and K = ( w/ c) ...fE. The pole gives a surface 
wave, whereas the result of integration along the edges 
of the cuts has a more complicated character, namely, 
it contains besides the surface field also part of the 
transition and Cerenkov radiations. In the present 
paper we confine ourselves to consideration of the 
pole contribution, and indicate the region of applicabil­
ity of the corresponding result. 

The values of kjz and ksz at the pole are 
(I) 1 (I) £ 

kjz = ----====::::::-,. ksz = ---=====:-. 
q/1 + 8 c 1'1 + 8 

In the presence of absorption, the imaginary parts of 
K, kjz, and ksz should be positive. When w > 0 this 
requirement is satisfied by the following choice of 
roots: 

--- 1 i 
1'1 + 8 = -=l'/1 + 8/+ 1 + 8 1 +-=-l'/1 + 8/-1-81

, 

1'2 l'2 

- 1 --- i ----
1'8 = -=l'/e/+ e' + -=l'/8,j- 8 1 , 

l'2 1'2 

(2.1) 

where E' is the real part of the dielectric constant: 
E=E'+iE" (E">O when w>O). When w<o, we 
choose complex conjugate values of the roots. 

As a result of taking the residues in (1.1) and (1.2), 
we obtain the field of the surface wave excited by an 
arbitrarily moving charged particle, in the form 

+if\, y;:ni'l ( ~ V--8-rt)] exp( iwt- i~ z + z,) d~, 
c 1+8 c 1'1+8 

II..,,; = IIw;i ( ~' -+ fl, / e, z, ->- ezd , IIoo/ = II..,;; ( z -+ ez), 

II..,,• = II..,;; ( fl,-+ ~./ e, ·z-+ 8Z, z,-+ ezd. 

(2.2) 

Here and below the arrows in the parenthe~is indicate 
the substitutions which must be made in rrL,j in order 
to obtain the corresponding Hertz veCtor, and we have 
introduced the following notation: 

P" = [(x- xd'+ (y- y,) 2]'1•, 

In the wave zone 

y-y, 
CJlt = arctg ---- . 

X- Xt 

Pt~ I v 1:J~t, 

(2.3) 

(2.4) 

The results simplify and the first formula of (2.2) takes 
the following form: 

( w 1/-e w z + z, ) 
xexp iwt+i- yl--p,-i-=- ~. 

c 1 + 8 c l'1 + 8 

To obtain the remaining Hertz vectors it is sufficient 
the make the same substitutions as were indicated in 
(2.2). 

It follows from (1.3) that in the wave zone the elec­
tromagnetic field is determined by the obtained Hertz 
vectors by means of the formulas 

w2 1 _ 
E..,;=--- II.,i[ek+ l'8(icoS.CJlt + j sinqJb)], 

c' 1+ e 

E.,• = _.!!!.-1- II.,• [k + l';{i cos CJlt + j sin CJl•) ], 
&1+e (~m 

;,s ro2 1/ 8 ;,s . . • H.., =- --II., (lSlllqJt- JCOSCJlt)· 
c2 1 + 8 

In the present paper we dispense with comparison 
of the absolute contribution from the cuts and the pole 
term. We note, however, that the branch points and the 
pole lead under certain conditions to the same field 
configuration, and the pole term may be completely or 
partly canceled. We confine ourselves to an assess­
ment of the conditions under which such a cancellation 
does not take place, and consequently, a separate con­
sideration of the pole contribution is justified. 

We call attention to the fact that on the edges of the 
cuts the imaginary part of K can assume arbitrary 
positive values, whereas the real part of K lies in the 
intervals 

(I) (I) -

0 <Rex<-, 0 <Rex< -Rel'e, 
c c 

which determine the regions of integration along the 
edges of the cuts. We can state that in the wave zone 
the results do not cancel each other at least under the 
condition when the pole lies beyond the limits of inte­
gration along the edges of the cuts, that is, when the 
following inequalities are satisfied: 

Rev 8 > 1, ReV1 +8 >Rei-;. (2. 7) 
1 +8 e 

In this case the pole contribution corresponds to small 
wavelengths which are not contained in the integrals 
along the edges of the cuts. A detailed examination of 
the region of applicability of the pole contribution en­
tails calculation of integrals along the edges of the cuts. 
This problem calls for additional research. 

3. EXCITATION OF SURFACE WAVES IN OBLIQUE 
INCIDENCE 

Let us consider the field of a surface wave excited 
when a charged particle is incident on the interface at 
a certain acute angle. Assuming the motion of the 
particle to be uniform and linear, and choosing the 
plane passing through the normal to the interface and 
the direction of motion as the xz plane, we put Yt; = 0, 
xt = vxt, zt; = Vzt, f3y = 0, and t = vt. ~he integration 
with respect to t in the formulas for nt,. ~d rr~j 
should be carried out for - oo to 0, and i~ nJ, ana 
II~s from zero to infinity. s 
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In the wave zone, at sufficiently large distances from 
the point of intersection of the interface, where the 
quantities p~ in the pre-exponential factors and cp~ 

can be regarded as constant and we can confine 
ourselves to the linear terms of the expansion of the 
functions in the argument of the exponentials, we get 

eke[2c)'~)]'l• (Pxcos<p- ~. l'Blexp {iw.(y;-p- z)/cl'~} 

Ilooi=-
eke[2cl'~l''• (~xcos-~z/-{s)eXip{iw()';;p-z)/cl'~ 

)'1 + e- ~x l'e cos <p - ~.e 
n.,;' = TI.,;i(;~ 8Z), D..,;= II.,,i(z~ ez)o (3.1) 

The vectors nLj and Il~j describe a surface wave 
produced when a particle moving in vacuum is instan­
taneously stopped on the interface, and nLs and Il~s 
are the same when the particle is ejected into the 
medium (in the same direction and at the same velocity). 
If the particle moves uniformly and in a straight line 
through the interface, the field of the surface wave in 
the vacuu~ ( z > 0 )

0 
is determined by the sum of the 

vectors nLj and nLs· The sum of the vectors Il~s 
determines in this case the surface wave and the 
medium ( s < 0 ) • 

The spectral density of the energy flux per unit area 
in vacuum and in the medium is expressed in terms of 
the obtained Hertz vectors of the surface waves by 
means of the formulas 

S.,i== w•/D.,i/2 /-8-jRe[V 8 (icos<p+jsin<p)- k l, 
c' · 1 + e 1 + 8 l'1 + 8 1 (3.2) 

S.,•=~~/ll.,'/ 2 1-8 -11 Re[ 1 (icosqJ+jsin<p)- k Jo 
c3 '1 + 8 • )'8(1- e) )'1 + e 

When the glancing ang~e dec;reases to the limit 
f3z - 0, the quantities IlLj + IlLs and Il~j + Il~s 
vanish. This means that tlie excited surface waves are 
not formed in this limiting case in the corresponding 
fields. In the absence of absorption in the vicinity of 
the angle cp = arc cos ( .fl+E./ f3 x/E), proportional to 
f3z, of coherent generation of the surface wave these 
quantities are inversely proportional to f3z for any 
arbitrarily small but finite I f3z 1. This region makes 
the main contribution which is inversely proportional 
to I {3z I , to the radiation intensity. We note that in the 
case of glancing incidence it may be necessary to take 
into account the scattering of the particle in the 
medium. In large-angle scattering over small distances, 
the influence of the scattering on the generation of the 
surface wave can be estimated by retaining only that 
part of the surface-wave field which is generated along 
the path in the vacuum. 

Let us consider now the field of the surface wave at 
smaller distances from the particle trajectory, when 
the functions p~ and cp~ cannot be regarded as con­
stant. We first carry the integration in formula (2.5), 
rewriting it here under the assumption of uniform and 
linear motion of the particle in the form 

where 
--

w ( 1/ 8 z~ ) h=- ~+~y--p,-~--= 0 

v 1 + 8 1'1 + 8' 
(3.4) 

In the case of glancing incidence of the particle on the 
interface and weak absorption of the surface wave 
( Re v'E/ ( 1 + E ) » Im ..J e/ ( 1 + E }) the exponential 
factor in the integrand can oscillate strongly. The in­
tegration is carried out in this case by the stationary­
phase method. The stationary-phase point exists under 
the condition 

/1 + e/- Re(MITB*J < ~xRel'e(1 + e')o (3,5} 

(Here and henceforth we put for concreteness f3x. > 0.) 
The value of cos cp ~ at the extremum of the function 
f~ is equal to 

/1 + 8/- Re(~,l'~') 
COS(j)r = o 

~xRel'e(1 + e') 
(3.6) 

The most essential region of integration has an order 
of magnitude 

~~ ~ _1_ 1/ cp, 11 + 81''• (3.7) 
r ~X f ffi Sin2cpr 8 7 

and the angular dimensions of the projection of this 
region on the interface are of the order of 

~(j)r ~ v _ _c_ I ~"t! l '/• 0 (3,8} 
Wpr 8 

If in the region (3. 7) the imaginary part of the linear 
term of the expansion of f~ in a Taylor series in the 
vicinity of the stationary-phase point is much smaller 
in absolute magnitude than unity, that is, 

I lm ~. + ~xl';;cos (j)r / v wp, 11 + 81 '1• < 1, (3.9} 
~xl'1+8 I csin2 qJ, 8 

and the observation point is such that distance from the 
corresponding ~r to the origin is larger than A ~r, 
then the integration in (3.3) leads to the following re­
sult 

2ieke ~x cos <p,- pzl';- [· <•> ( 1/ e z + ,z, )] fl .i exp I - ~,+ ~ y ---p,-~--=-
W(82-1) ~x/sinqJr/ to 1+8 l'1+e-

(3.10) 
where zr is the coordinate of the point of the stationary 
phase, and Pr is the projection of the distance from 
the point of observation to the corresponding point of 
stationary phase on the interface. 

The inequality (3.9) determines the spatial region of 
existence of the wave (3.10), due to absorption and to 
the inclination of the trajectory of the particle to the 
interface. The condition that the point of the stationary 
phase be far from the origin defines that part of the 
surface where the diffraction wave can be neglected. 
From the existence of a stationary-phase point it fol­
lows that the region of existence of the result (3.10) 
lies beyond the limits of the angle between the rays 
drawn from the origin at angles I 'Pr I and - I 'Pr I to 
the projection of the particle v~locity on the surface. 

According to (2.2)' Il~j = nLj ( z - EZ) and there-

fore calculation of the vector Il1:,j coincides fully with 
that given above, and the result is determined by means 
of formula (3.10), in which we will replace z by ez. 
Similar calculations of the field of a surface wave 
generated when a particle moves in a medium leads to 
formulas that differ from (3.5) -(3.9) in that f3z ~s re­
plac:;ed in the latter by E{3z. We ultimately get IlLs 
= nLj {cpr- cp~, f3z- f3z/E, z- Ezr), where 'PJ.. 
= 'Pr<f3,.- E{3z), and accotding to (2.2) Il~s 
= II1ts t z - EZ). Unlike IlLj and Il~j, these results 
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take place within the limits of the angle produced by 
rays drawn from the point of intersection of the parti­
cle and the interface at angles I <Pr I and -I <Pr 1. 

Using these results, let us find the spectral density 
of the Poynting vector through the plane y = Pr I sin fPr I 
and y = - Pr I sin <Pr I (and accordingly, y = Pr I sin <Pr I) 
of a surface wave generated when a particle moves in 
vacuum and in a medium, in the form 

Woo·= 2e2 / __ e_l 2 /_e_ll~xCOS!j>,- ~zl'el2 ( Rel/ _e_Iml"l+; 
' c 1 - e2 11 + e J ~x~' sin q>, J \ V 1 + e 

+ Re 1 I 1"1 + e \1 )'1 + ( 2 w I V e \ 
ye( 1 +e) m--e-) m eexp\- :r, m . 1 +e/' 

(3.11) 

In the absence of absorption these results greatly 
simplify and take on the following form: 

(3.13) 

Woo,= 2e'(e,-1+p,') (3.14) 
cJ~,Jl"~bt- e, + 1)'e,-1(e,2 -1)' 

where E1 = -E > 1, 13i E1 > E1 - 1. The total energy 
flux for uniform and linear motion of the particle 
through the interface is determined by the sum W wj 
+ Wws· 

The spectral density of the excitation energy of the 
surface wave is inversely proportional to the glancing 
angle. In the case of a nonrelativistic particle, this 
quantitative dependence was indicated by Stern and 
Ferrell [sJ. In the limit as /3z - 0, the resultant in­
finite intensity is connected with the assumption of 
uniform and linear motion of the particle and coherent 
interaction of the particle with the surface wave on the 
entire infinite path-the Cerenkov effect on surface 
waves. 

In concluding this section we note that if an inequal­
ity that is the inverse of the (3.9) is satisfied, and is 
also the inverse of (3.9) when {3 z in the latter is re­
placed by E/3z, then the results are given by formulas 
(3.1). 

4. SURFACE WAVES AT NORMAL INCIDENCE 

In the simplest particular case of uniform and 
linear particle motion from vacuum into a medium 
perpendicular to the interface, the field of the surface 
wave in the wave zone is determined by formulas (3.1), 
in which we must put f3x = 0 and /3z = -/3. Using these 
results, we obtain the spectral density of the energy 
flux in the vacuum and in the medium, respectively, 
through a cylindrical surface of radius p in the case 
of instantaneous stopping of the particle on the inter­
face: 

wJ;= 2e2~2 JeJ 2 1-e-I'J. Reye(1+e') 
cJ(l'1+e+~)(e-1)J 2 1+e' lmY1+e 

X exp (\- 2 ~ p Im V -1 e ) , 
c +e 

-2e2~2JeJ ) e i''h Re)'e(1+e) 

cJ(l"1+e+~)(e-1)J 2 1+e lm(e'l"1+e) 

(4.1) 
~ w 1/ e \ 

Xex -2-plmy--), 
c 1 +e 

In the case of ejection of the particle into the medium: 

; _ 2e2~2 /-e-1'/, Re)'e(1 + e') w "'' - -----==~--'----
cJ(l"1+e+~e)(e-1)J211+e · Imy1+e 

X exp(-2~plm 11- 8 -), 
c V 1 + e 

, 2e2p2 I e I 'h Re 1 e ( 1 + e) 
W,,,=- cJ(11+e+~e)(e-1}Tz 1+e JeJim(e'11+e) 

Xexp(-2~plm l/ e ) 
c V 1 + e 

and in the case of motion of the particle through the 
interface 

(4.2) 

Ww= 2e2~2 J1+PJI1~2 JeJ 1-e-/'h Re1~ 
cJ(y1+e+P)(y1+e+~e)J 2 1+e Imy1+e 

xexp(-2~plm V-e-). c 1 +e 

Ww' = _ 2e2 ~2 J1 + ~11 + eJ 2 I~"- 1'/, Heyll_{_1 +e) 
cJ('t'f+e+~)(11+e+Pe)J 2 H-e Im(e'V1+e) 

X exp ( -2~plm 11 - 8--). 
c V 1 + e 

In the absence of absorption, the results greatly 
simplify and take the form 

. ; 2e2p2e13 

w "'' = --'-----=== 
c(~'e12 +.e1 -1) (e12-·1) 2 fe1 -1 

; 2e2 ~2 (p2e1 - ~2 + 1) w 00 = ~,-------,.:...=---,::-·--''------'~-:-----; 
c(~2 + e1 -1) (~2e 12 + e1 -1) (e,-1)'1> 

(4.3) 

(4.4) 

where El = IE I = -E > 1, and the quantities w~j' w~S' 
and W~ are negative and their. abso~ute values. are 
smaller by a factor E~ than WLj' WLs, and WL, re­
spectively. 

The spectral density of the excitation energy of the 
surface waves is determined by the sum of the fluxes 
in vacuum and in the medium. When the particle moves 
through the interface, this density is equal to 

2e'~"(p2e 1 - ~· + 1) (e1 + 1)e1 (4.5) w"' = __ .:..._:.:.__ _ __:___c___:__:__--:= 

c(P2 + e, -1) (~2e12 + e1 -1)ye, -1 

Excitation of surface waves in the absence of ab­
sorption, in the case of uniform and linear motion of 
the particle perpendicular to the interface between 
vacuum and a medium, was also considered by 
E1dman[7]. Our results for the quantities wL, w~, and 
Ww exceed by a factor of 2 those obtained inC7 J (the cor­
responding rather complicated formulas (4) and (5) 
ofC 7J for the energy flux of the surface wave in the 
medium and for the total flux (in the vacuum and in the 
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medium) can be simplified and one can verify that their 
integrands coincide with ours apart from the factor 2). 
The reason for the discrepancy lies in the fact that the 
region of variation of the frequencies was arbitrarily 
limited in[?] to positive values only. 

5. COHERENT GENERATION OF A SURFACE WAVE 

Let us consider the excitation of a surface wave by 
a charge particle moving uniformly and in a straight 
line along an interface. Let the particle move in 
vacuum at a distance Zo from the boundary in the xz 
plane in the positive direction of the x axis. In this 
case the surface-wave field in vacuum, in the wave 
zone, is determined by the following integral: 

II~; = ~~_t-:- 2iwe _( _e -Y' ~ co~, exp[ i (J)_ x/ 1 
)'ncw(e2 -1)\1+e -yp, u \ 

-- - (5.1) 

V E \ ,Ulv E wz+zol 
-~ ---coscp,)+<- --(xws<p,+ycos<pb)-i--= ax,, 

1 + E C 1 + E C l'1 + E ~ 

where the quantities Pf; and CfJ?; are determined from 
formulas (2.3), in which we must put yt = 0. 

Let the particle be ejected from the point x = 0 and 
let it suddenly stop at the point x = a. Then the inte­
gration in (5.1) should be carried out from zero to a. 
At sufficiently large distances from the particle tra­
jectory, when the quadratic term of the expansion of 
the function in the argument of the exponential in (5.1) 
in powers of xt; is much smaller than unity in the en­
tire region of integration, the integration leads to a 
result which is the analog of a three dimensional 
spherical wave: 

;._ ekvl'-2iweco.~<p f_ e )'!, (·w l'ep-z-z0 ) 1Iw3 - -- cxp !------------

l'ncp w2 (e2 - 1) \1 + e c -.'1-L_-e 
' (5.2) 

[ ,;-e 1--' [ { (t) ( v-e \ }] 
X 1 - ~ V 1 + e cos <p J 1 - exp i --;\ 1 - ~ 1 + 8 cos <p ) a , 

where p = v x2 + y2 and q; = tan -l ( y / x). 
At smaller distances from the trajectory of the 

particle, the integration is by the stationary-phase 
method. As a result we obtain the analog of the three­
dimensional cylindrical Cerenkov radiation wave: 

j 2ieke I ctg (/lr I [ . "' ( v-;- z + Zo \ l IIw,;= --------exp <- Xr+~ --p,.-~-=1 , 
w ( e2 - 1) c 1 + e -o + e _I 

(5.3) 11 + el 
<p, = arccos------=====---. 

~ Hel'e(i + e') 

This result holds also in the case when the station­
ary-phase point lies in the integration region, and the 
essential integration region does not contain the points 
of the particle emission and its sudden stopping. It 
follows hence that the wave (5.3) exists in the interval 
between rays drawn at identical angles I CfJr I and 
---I CfJr I respectively from the point of ejection and 
stopping, with the exception of the regions with angular 
dimensions on the order of ACfJr adjacent to these rays, 
where the diffraction of the surface wave is significant. 
At distances satisfying the following relation 

(5.4) 

the diffraction regions overlap and the wave is trans­
formed into an analog of a three dimensional spherical 
wave (5.2). 

Using (5.3), let us find the spectral energy flux 
density in the absence of absorption in vacuum, per 
unit path of the particle, in the form 

dW~; 4we2e13 exp (- 2wz0/ c l'e1 - 1) 

dx vc(e,2 -1) 2 l'~2e 1 - e1 + 1 
(5.5) 

where E1 = I E I = -E > 1 and {32E1 > E1 - 1. For the 
spectral density of the energy flux in the medium, the 
result is negative, and is smaller in absolute magnitude 
than (5.5) by a factor E~. Thus, the spectral density of 
the excitation energy of the coherent surface wave per 
unit path of the particle is equal to 

dWw; awL; dW!; 4we2e1 exp(-2wzo/cl'~~-1) 
d~ = dx + --dx" = --;~(e,' _ 1)li~z~;-:::__~~;-.;1-. (5.6) 

Sitenko and TkalichC4 J indicated the existence of a 
pole corresponding in the nonrelativistic approxima­
tion to the generation of a surface wave when a parti­
cle moves along the interface. The first to consider 
coherent generation of a surface wave on an interface 
between vacuum and a non-absorbing medium were 
Barsukov and Naryshkina[9 J. It must be noted that the 
spectral densities of the energy flux in vacuum and in 
the medium and of the total flux turn out to be larger 
by a factor of 2 than those derived from the correspond­
ing formulas ( 19) and (22) of [9 J (it is assumed that the 
integration is carried there both over positive and nega­
tive frequencies; in the second formula of (19) of C9 J 

there is a misprint: the term ( IE I - 1) in the de­
nominator of the integrand should be replaced by the 
square of this term). This difference is connected with 
the loss of a factor 2 in C9 J when taking the residue at 
the pole1 >. 

6. WORK OF THE DECELERATING FORCE 

The energy lost by a charged particle can be deter­
mined as the work performed by the moving charge 
against the reaction force exerted by the field. We are 
interested in that part of the work, which is connected 
with the excitation of surface waves. We confine our­
selves to the case of uniform and linear motion. When 
the particle is stopped on the interface, the formula 
for the work over the entire path of motion in the 
vacuum has in this case the form 

Integrating first with respect to f; and ?;', in order 
to avoid the appearance of diverging expressions when 
changing the order of integration, we must exclude 
from the integration the small interval near the origin, 
letting it go to zero after the calculations are com­
pleted. The subsequent integration with respect to q; 
is elementary. The integration with respect to K can 

!)Formulas (IS) and ( 17) of [9 ) for the field components of the 
particle contain misprints (see, for example, [ 11 •12 )). 
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be extended to the entire real axes going over simul­
taneously to integration with respect to the frequencies 
in the interval from zero to infinity. Closing the con­
tour of integration with respect to K in the upper com­
plex half -plane ( Im K > 0), confining ourselves to cal­
culation of the contribution from the pole, and then 
letting the excluded interval of integration with respect 
to t and t' go to zero and leaving out the integration 
with respect to the frequencies, we obtain the spectral 
density of the excitation energy of the surface waves 
in the form 

~~ 

W . = e: Im f1,(8• =~ll'1 + e [ [(~1-f8e_--:~~;~~-~::~~ 
- (l'f+; + fl,)• -1\.'82 + 2fl,]. 

£<111 + e + ~,) 2 - ~bl''' 

(6.2} 

Analogous calcul~tions for the spectral density of the 
excitation energy of the surface waves when a particle 
is ejected into the medium from the interface leads to 
a result that differs from (6.2) in the fact that f3z is 
replaced in the latter by E{3z everywhere except 
{fzE2 in the numerators, where E2 should be omitted. 

Calculation of the spectral density of the energy of 
excitation of the surface waves when a particle moves 
through the interface leads to the following result: 

e2· 1 [ (l'1+e-f1,)2-fl?e(2+e) 
W .. = - Im . e -'-'--::':=~=========-c._ 

• cp, (1+8)2l'1+e l'(l'1+8-f1,)2-llb 

-8 
0'1 + li + f1,) 2 -llb(2 +e) . (y1 + 8 -fl,e) 2 --_11~(1 + 2e) 

l'(l'1 + 8 -1\,8) 2 -lib 

(6.3) (l'1+e+fl,e) 2-f1,2 (1+2e) J + . 
Y(l'1 + 8 + fl,e) 2 -lib 

In (6.2) and (6.3) it is assumed that the real parts of 
the roots in the denominator terms in the square 
brackets, which remain after the introduction of the 
factors of the type ( ff+E ± f3z) and ( ~ ± f3z E), 
are positive. 

CONCLUSION 

In concluding our analysis, let us discuss certain 
consequences of the results for the case of glancing 
incidence of the charge. This problem is of particular 
interest because recently radiation was observed [ls,14 J 
of approximately double the intensity of either transi­
tion radiation or bremsstrahlung in a number of experi­
ments with fast electrons (with energy on the order of 
30 keV) in silver and under similar conditions. This 
radiation has an intensity maximum whose position 
does not coincide with the transparency band in the 
silver, but is somewhat shifted towards longer wave­
lengths and corresponds quite accurately to the posi­
tion of the maximum of the surface-wave intensity[l3 , 14J. 
It is obvious, however, that the surface waves do not 
form a spherical wave and cannot be observed directly 
in the form of radiation at large distances. Nonethe­
less, they can make a contribution to the radiation, if 

there exists an effective mechanism for their trans­
formation into three-dimensional waves-for example, 
scattering by irregularities of the surface, nonlinear 
effects, etc. The spectral density of excitation of the 
surface wave should then be much larger than the ob­
served radiation intensity, since the transformation 
coefficient is in general small. An estimate shows that 
the ratio of the intensity of the surface waves to the 
intensity of the transition radiation, for a glancing 
angle of 0.5° and for {3 = 0.33, is ~ 104 • Thus, any 
transformation mechanism with efficiency on the order 
of several per cent can yield the experimentally ob­
served radiation intensity. 

It is known [1 sJ that the intensity of scattering by a 
statistically rough surface is proportional to the quan­
tity k2 /;2 , where t is the rouglmess parameter and k 
the wave vector of the wave. From estimates of the 
latter concerning the field configuration of the surface 
wave in the wave zone it follows that the transforma­
tion turns out to be sufficiently effective even in the 
case of a quite good surface. 
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