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When nuclei are bombarded by heavy ions, various processes of nucleon tunneling through the poten­
tial barrier that separates the interacting nuclei at the smallest possible classical distance are ob­
served. It is shown that nucleon pairing may give rise to a significant increase of the cross section 
for the transition of neutron or proton pairs, a phenomenon which in some respects is analogous to 
the Josephson effect in superconductors. Pairing is taken into account in the calculation of the 
probability for the excitation of various levels by one-nucleon exchange, which has been calculated 
earlier by Breit and Ebel[lJ without such corrections. The probability for two-nucleon exchange is 
determined. An expression is obtained for the two-proton radioactivity with account of any number 
of arbitrary levels, which goes over into the Galitskii-Chel'tsov formulaC2J in the limiting case of a 
single S level. 

1. INTRODUCTION 

IN nuclear reactions with heavy ions the energy can be 
chosen in such a way that the classical trajectory of 
the colliding nuclei corresponds to a close approach 
without touching. In this case one- or two-nucleon 
tunneling reactions are possible, where the nucleons 
move from one nucleus to another below the barrier. 
It will be shown below that the pairing of the nucleons 
may give rise to a significant increase of the probabil­
ity for such a two-nucleon tunneling transfer, whicl.l is 
to some extent analogous to what is observed in the 
transfer of a pair of electrons from one superconductor 
to another through a thin barrier-a dielectric (Joseph­
son effectC 3J). This analogy was noted in[4 J. An essen­
tial difference between the Josephson effect and the 
nucleon transfer in nuclear reactions arises from the 
fact that the superconductors are at rest, i.e., there is 
no "reserve" kinetic energy of the interacting systems 
which, in principle, can be used for breaking up the 
pair. Therefore, one-electron exchange connected with 
the break-up of a pair cannot occur at zero tempera­
ture. In nuclear reactions the tunneling nucleon may 
change its energy by an amount proportional to the in­
verse of the time between two collisions, wo, where 
llwo ~ 2 to 3 MeV .ll This quantity is of the order of the 
pairing energy, so that one-nucleon transfer in nuclear 
reactions has a significant probability. The probability 
for two-nucleon transfer is of the order of the square 
of the probability for one-nucleon transfer. However, 
in some cases the relative probability for two-nucleon 
transfer can be strongly enhanced. This happens when 
there are no levels with small angular momentum 
within the "distance'' wo from the Fermi surface, 
since the probability for a transition from a state with 
large angular momentum is small owing to the centri­
fugal barrier. 

Taking account of the pairing, we have found the 
probability for the excitation of various levels by one­
nucleon exchange, calculated earlier by Breit and 
Ebel [tJ without account of pairing. The probability for 
two-nucleon transfer is determined. An expression is 

1lin the following we assume 11 = c = I. 

obtained for the two-proton radioactivity with account 
of any number of arbitrary levels. This expression 
leads to the Galitski'l:..Chel'tsov formulaC 2J in the limit 
of a single S level. 

2. THE HAMILTONIAN OF THE NUCLEONS 

Let us consider the collision of two complex nuclei 
(A » 1 ) with energies somewhat smaller than the 
height of the potential barrier. In this case the transfer 
of one or two nucleons has a small effect on the motion 
of the nuclei, and one can assume that the nuclei move 
along their classical trajectories (hyperbolas). The 
Hamiltonian of the nucleons at each moment depends 
on the distance between the nuclei as on a classical 
parameter, and can be written in the form 

H=H1 +H2+V. 

Here H1 and H2 are the Hamiltonians of the isolated 
nuclei, and V is the tunneling Hamiltonian. 

The Hamiltonians H1,2 describe the motion of the 
nucleons in the self-consistent field of the core and 
the residual interaction, of which we shall keep that 
part leading to pairing. In a single-particle level 
representation the Hamiltonians H1 ,2 have the form 

H1,2 = ~Baaa+a, + g ~ aa+a_,+aa•a-a•, . ... 
where a~ and aA are the creation and annihilation 
operators for a nucleon in the state A. 

The tunneling Hamiltonian has the form 

(1) 

(2) 

(3) 

Here a~ 1 and aA are the creation and annihilation 
operators for paiticles in the state At of the first 
nucleus, and ax2 and aA2 are the creation and annihi­
lation operators for particles in the state A2 of the 
second nucleus. The overlap integral TA1A2 is equal to 
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(4) 

where U1,2 are the self-consistent potentials of the 
first and second nuclei. For relatively sharp bounda­
ries of the well the overlap integral is up to a factor 
given by 
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T~.~.(t) ~ exp{- S dr)'2mled+ l;'/R;2}, 

where the integral is taken between the boundaries of 
the nuclei, and Ei and li are the energy and angular 
momentum of that of the state.s .\1 and .\2 for which 

(5) 

the exponential (5) is larger. The factor in front of the 
exponential (5) depends on the detailed form of the 
diffuseness of the potential at the nuclear boundary and 
cannot be calculated theoretically. However, it can be 
determined from experiments on one-nucleon exchange, 
and the value obtained can be used for the calculation 
of the probability of two-nucleon exchange. 

Taking the moment of closest approach of the nuclei 
as the zero of the time coordinate, we obtain for near 
head-on collisions 

T~.~.(t) = T,,~,(O) exp [ -w 02t2/2], 
wo = [l'2me;Z,Z,e2 /J.~R2] '" ~ 2-3 MeV 

(6) 

Here J.1. is the reduced mass of the colliding nuclei 
with the charges Z1 and Z2, and R is the closest 
classical distance (between the centers of the nuclei). 

3. ONE-NUCLEON TRANSFER 

In the interaction picture the S matrix for the 
transition is written in the form 

S=Texp{i_~ V(t)dt}, (7) 

where T is the time ordering operator, and the opera­
tor V ( t ) has the form 

V(t) = ~ T,,~,(t)[a~,-t:(t)a,,(t)+ a,,(t)a>,+(t)], 
(8) 

The probability for one-nucleon transfer is given by 
the square of the modulus of the matrix element 

W= I~ (A,+1,A,-1IV(t)1At,A2)df (9) 

Let us substitute here V ( t) from (8) and use for the 
matrix elements of the operators a and a• the ex­
pressions obtained in the superconducting model of the 
nucleus [sJ for even-even nuclei: 

(10) 

Here E,\ is the energy of a single-particle level with­
out account of pairing found, for example, in the Nils­
son scheme; E.\ = .JE~ + D-2 is the single-particle en­
ergy with account of pairing. 

As a result we obtain for the probability of the 
transition of a nucleon from the state .\1 of one nucleus 
to the state .\2 of another 

W =2 'IT (O)I'E,,+e>, E,,-e<, 
1 nwo !.,>, 2E,, 2E,, (11) 

{ (MA,+t -MA, +MA,-t -MA,+Et+E,) 2 } 
Xup - w; . 

Here MA is the mass of nucleus A; E1 and E2 are the 
excitation energies of the nuclei after the collision. 

The matrix element T,\1,\2 decreases with increasing 
angular momentum of the states .\1 and .\2. Although 
its value is known only up to the factor in front of the 
exponential, expression (11) allows one to connect the 
relative probabilities for the excitation of different 
levels with the admixture of a one-nucleon state at 
these levels. Except for the last three factors, formula 

(11) was obtained by Breit and Ebel. C1J 

4. TWO-NUCLEON TRANSFER 

The probability amplitude for two-nucleon transfer 
is determined by formula (7) in second order in the 
operator V: 

00 t 

M =<At +2.A,- 211 dt ~ dt'V(t)V(t') I At.A2 > 
=~ ~ S S dtdt'T.,~.(t)T->,->,(t')F,,(t,f)FA.(t',t). 

i\Ji\2 

Here F is the Green's function introduced by 
Gor'kov:CsJ F~(t, t') = (A- 21 fa,(t)a,(t') lA> = 

=~exp{i[(MA-MA-2) t+t' -E,It-t'l]}. 
2E~ _ 2 ' 

Substituting (13) in (12), we obtain for the transition 
probability: 

(12) 

(13) 

U7 -IMI'- ___Jt_ I " /l,!l,T,7,,(0) r {· wo'Y' l n 2 - - L..i J exp zy - ------ f dy 
4wo2 ,,,, 4E~,E~,(E~.+E~,) 0 . 4(E,,+E<,) 

X { (MA,+M:,,-MA,+2-MA,--2)'} I' 
exp - ----- 4wo' . (14) 

The comparison of the probabilities for two- and 
one-nucleon transfer must be carried out for each 
nucleus using the actual location of the single-particle 
levels. The comparison is simplified in the case when 
there is only one level with a small angular momentum 
near the Fermi surface and when the probability for a 
transition from a state with large angular momentum 
can be neglected because of the centrifugal barrier. In 
this case the unknown overlap integral in the ratio of 
the probability for two-nucleon exchange over the 
square of the probabilities for one-nucleon exchange 
cancels out. As a result we obtain 

W 2 1 I woll11l, 
W,2 = ~ /;(E,, + E,.,) (E~1-,-:+-e~-:.)-:(-;:E,-~.--~e,,) 

00 2 

X (" exp{iy- wo2y2/4(E>., + E,.,) }dy! J I 
0 

{ (MA,+MA,-MA,-2-MA,+2)'t 
X exp - 2cJo2 --! 

{ 2(MA,+t-MA,+MA,-t-MA,+Et+E,) 2 ). (15) 
X exp + · j. 

<::.::o2 

The quantities t., E, wo, Mi - Mk entering in this 
expression have the same order of magnitude. There­
fore the ratio (15) is of order unity for the majority of 
nuclei. The last factor, and hence the whole expres­
sion (15), become exponentially large when the excita­
tion energy of one of the nuclei E1 or E 2 is large 
compared to wo in one-nucleon transfer. If wo tends 
to zero, one-nucleon becomes impossible. This case 
is realized in the Josephson effect in superconductors 
and in the two-proton radioactivity in that variant 
(cf. C4J) where the binding energy of the last (even) 
proton is positive. 

5. TWO- PROTON RADIOACTIVITY 

The two-proton radioactivity was predicted by one 
of the authors. C4 , 7J A quantitative theory for a single 
S level has been given by Galitskil' and Chel'tsov. C2J 
The method of the tunneling Hamiltonian considered 
above allows one to obtain in a simple way a more 
general formula applicable to real nuclei. 
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Like the amplitude for two-nucleon exchange, the 
amplitude for two-proton radioactivity is determined 
by the matrix element of the S matrix (7) in second 
order in the tunneling Hamiltonian V. The vacuum 
plays the role of one of the colliding nuclei to which the 
two nucleons are transferred. Without account of the 
interaction of the protons in the final state the matrix 
element of the operator a1. ( t) between the vacuum 
and a state of the proton in 1the Coulomb field of the 
nucleus with energy E is equal to e-iEt. Formula (12) 
takes the form 

1 00 

M=2: ~) ~ dtdt'F~(t,t')T,.,,T,.,,e-i<••t+&,t'>. (16) 
l -oo 

Here the function F is determined by (13), and the 
overlap integrals Tni do not depend explicitly on the 
time but depend only on the angular momentum l of the 
initial state ;\ and the energy Ei of the final state Ai 
with exponential accuracy: 

{ (' [ { Ze•) l(l + 1) 1'''} T~~i= exp - J dr 2m\ B; --r- ---r2- , 
R 

(17) 

where R is the nuclear radius, and r 0 is the zero of 
the expression under the root sign. For l = 0 and 
R « r 0 we have 

T,.,i ~ exp{- rrZe2/ttv;}. (18) 

As is usually done in perturbation theory, we first 
regard the time during which the perturbation is 
present as finite in the continuous spectrum, and then 
let it tend to infinity. As a result we obtain for the 
probability per unit time for a transition to a state with 
two protons emitted with the energies E1 and E2 

dW _ 2n j .. ~ T ll j' 
dt - It ' ~ r~~. -~~. (Bt- e,) 2/4- E~· 

X ll(MA- MA-2- 2mp- £t- e2). 
(19) 

In the model of a single S level, where EA = A= g2 , 

formula (19) goes over into the expression obtained by 
Galitskii and Chel'tsov. [2J In the general case one must 
take all levels into account. The main contribution to 
(19) comes from the state with maximal angular mo­
mentum, even if its energy E;\ is large. 

6. CONCLUSION 

The pairing of nucleons has a large effect on the 
probability for nuclear transitions. Besides the usual 
effect due to the difference in binding energy of the 
nucleons in even and odd nuclei, there exists an addi­
tional effect which enhances strongly the probability 
for two-proton radioactivity and for two-nucleon ex­
change. The point is that even if the nuclear levels are 
far apart, the model of a single j level may turn out 
to be ill-suited for a description of such transitions. 
Usually the upper level has a large angular momentum, 
and the probability for a transition from it is small 
because of the centrifugal barrier. The pairing has the 

effect that the angular momentum of an individual 
nucleon is no longer well defined, and there is a sig­
nificant probability that the nucleon is in a level with 
small angular momentum. Since the overlap integral 
depends strongly on the angular momentum, it may 
happen that the total transition rate is determined by 
the transition from a level with small l. 

It should be kept in mind that formulas {14) and 
(19) describe the pairing effect only qualitatively. In 
order to obtain quantitative results, one must deter­
mine the factors in front of the exponentials in the over­
lap integrals and take account of the quantum mechan­
ics of the motion of the colliding nuclei. In addition, 
several physical effects must also be considered. It is 
possible, for example, that the excitation of collective 
vibrational or rotational states plays an appreciable 
role. In classical terms, this corresponds to the ap­
pearance of a tidal wave during the collision of the 
nuclei, which may influence the value of the overlap 
integrals. In the case of far-away collisions one must 
possibly take account of the interaction of the nucleons 
in the sub-barrier region. 

/-o-, ,,,"·-c.,, ( I ( ) ,_ --/ ..__ 
.a ib 

In order to take account of these effects and for the 
consideration of more complicated reactions, it is 
convenient to develop a diagram technique which would 
combine the diagram technique of Migdal for the theory 
of finite superfluid fermi systems [5J with the diagram 
technique of Shapiro [a] for direct nuclear reactions. 
The reaction amplitude for a two-nucleon exchange is 
shown in Fig. a, and that for two-proton radioactivity 
in Fig. b. The solid lines inside the nuclei represent 
the Green's functions F of a superfluid fermi liquid, 
and the solid lines outside the nuclei illustrate the free 
motion of the nucleons in the sub-barrier region. 
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